601 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STRSNA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STRSNA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsna.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsna.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsna.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
| *                          LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          HOWMNY, JOB
 | |
| *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
 | |
| *      $                   VR( LDVR, * ), WORK( LDWORK, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STRSNA estimates reciprocal condition numbers for specified
 | |
| *> eigenvalues and/or right eigenvectors of a real upper
 | |
| *> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 | |
| *> orthogonal).
 | |
| *>
 | |
| *> T must be in Schur canonical form (as returned by SHSEQR), that is,
 | |
| *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
 | |
| *> 2-by-2 diagonal block has its diagonal elements equal and its
 | |
| *> off-diagonal elements of opposite sign.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies whether condition numbers are required for
 | |
| *>          eigenvalues (S) or eigenvectors (SEP):
 | |
| *>          = 'E': for eigenvalues only (S);
 | |
| *>          = 'V': for eigenvectors only (SEP);
 | |
| *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] HOWMNY
 | |
| *> \verbatim
 | |
| *>          HOWMNY is CHARACTER*1
 | |
| *>          = 'A': compute condition numbers for all eigenpairs;
 | |
| *>          = 'S': compute condition numbers for selected eigenpairs
 | |
| *>                 specified by the array SELECT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
 | |
| *>          condition numbers are required. To select condition numbers
 | |
| *>          for the eigenpair corresponding to a real eigenvalue w(j),
 | |
| *>          SELECT(j) must be set to .TRUE.. To select condition numbers
 | |
| *>          corresponding to a complex conjugate pair of eigenvalues w(j)
 | |
| *>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
 | |
| *>          set to .TRUE..
 | |
| *>          If HOWMNY = 'A', SELECT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDT,N)
 | |
| *>          The upper quasi-triangular matrix T, in Schur canonical form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL array, dimension (LDVL,M)
 | |
| *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
 | |
| *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
 | |
| *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
 | |
| *>          must be stored in consecutive columns of VL, as returned by
 | |
| *>          SHSEIN or STREVC.
 | |
| *>          If JOB = 'V', VL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.
 | |
| *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VR
 | |
| *> \verbatim
 | |
| *>          VR is REAL array, dimension (LDVR,M)
 | |
| *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
 | |
| *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
 | |
| *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
 | |
| *>          must be stored in consecutive columns of VR, as returned by
 | |
| *>          SHSEIN or STREVC.
 | |
| *>          If JOB = 'V', VR is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.
 | |
| *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (MM)
 | |
| *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
 | |
| *>          selected eigenvalues, stored in consecutive elements of the
 | |
| *>          array. For a complex conjugate pair of eigenvalues two
 | |
| *>          consecutive elements of S are set to the same value. Thus
 | |
| *>          S(j), SEP(j), and the j-th columns of VL and VR all
 | |
| *>          correspond to the same eigenpair (but not in general the
 | |
| *>          j-th eigenpair, unless all eigenpairs are selected).
 | |
| *>          If JOB = 'V', S is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SEP
 | |
| *> \verbatim
 | |
| *>          SEP is REAL array, dimension (MM)
 | |
| *>          If JOB = 'V' or 'B', the estimated reciprocal condition
 | |
| *>          numbers of the selected eigenvectors, stored in consecutive
 | |
| *>          elements of the array. For a complex eigenvector two
 | |
| *>          consecutive elements of SEP are set to the same value. If
 | |
| *>          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
 | |
| *>          is set to 0; this can only occur when the true value would be
 | |
| *>          very small anyway.
 | |
| *>          If JOB = 'E', SEP is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
 | |
| *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of elements of the arrays S and/or SEP actually
 | |
| *>          used to store the estimated condition numbers.
 | |
| *>          If HOWMNY = 'A', M is set to N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LDWORK,N+6)
 | |
| *>          If JOB = 'E', WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.
 | |
| *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*(N-1))
 | |
| *>          If JOB = 'E', IWORK is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The reciprocal of the condition number of an eigenvalue lambda is
 | |
| *>  defined as
 | |
| *>
 | |
| *>          S(lambda) = |v**T*u| / (norm(u)*norm(v))
 | |
| *>
 | |
| *>  where u and v are the right and left eigenvectors of T corresponding
 | |
| *>  to lambda; v**T denotes the transpose of v, and norm(u)
 | |
| *>  denotes the Euclidean norm. These reciprocal condition numbers always
 | |
| *>  lie between zero (very badly conditioned) and one (very well
 | |
| *>  conditioned). If n = 1, S(lambda) is defined to be 1.
 | |
| *>
 | |
| *>  An approximate error bound for a computed eigenvalue W(i) is given by
 | |
| *>
 | |
| *>                      EPS * norm(T) / S(i)
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal of the condition number of the right eigenvector u
 | |
| *>  corresponding to lambda is defined as follows. Suppose
 | |
| *>
 | |
| *>              T = ( lambda  c  )
 | |
| *>                  (   0    T22 )
 | |
| *>
 | |
| *>  Then the reciprocal condition number is
 | |
| *>
 | |
| *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
 | |
| *>
 | |
| *>  where sigma-min denotes the smallest singular value. We approximate
 | |
| *>  the smallest singular value by the reciprocal of an estimate of the
 | |
| *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
 | |
| *>  defined to be abs(T(1,1)).
 | |
| *>
 | |
| *>  An approximate error bound for a computed right eigenvector VR(i)
 | |
| *>  is given by
 | |
| *>
 | |
| *>                      EPS * norm(T) / SEP(i)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
|      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          HOWMNY, JOB
 | |
|       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
 | |
|      $                   VR( LDVR, * ), WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            PAIR, SOMCON, WANTBH, WANTS, WANTSP
 | |
|       INTEGER            I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
 | |
|       REAL               BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
 | |
|      $                   MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
|       REAL               DUMMY( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SDOT, SLAMCH, SLAPY2, SNRM2
 | |
|       EXTERNAL           LSAME, SDOT, SLAMCH, SLAPY2, SNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLABAD, SLACN2, SLACPY, SLAQTR, STREXC, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       WANTBH = LSAME( JOB, 'B' )
 | |
|       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | |
|       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
 | |
| *
 | |
|       SOMCON = LSAME( HOWMNY, 'S' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE
 | |
| *
 | |
| *        Set M to the number of eigenpairs for which condition numbers
 | |
| *        are required, and test MM.
 | |
| *
 | |
|          IF( SOMCON ) THEN
 | |
|             M = 0
 | |
|             PAIR = .FALSE.
 | |
|             DO 10 K = 1, N
 | |
|                IF( PAIR ) THEN
 | |
|                   PAIR = .FALSE.
 | |
|                ELSE
 | |
|                   IF( K.LT.N ) THEN
 | |
|                      IF( T( K+1, K ).EQ.ZERO ) THEN
 | |
|                         IF( SELECT( K ) )
 | |
|      $                     M = M + 1
 | |
|                      ELSE
 | |
|                         PAIR = .TRUE.
 | |
|                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
 | |
|      $                     M = M + 2
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      IF( SELECT( N ) )
 | |
|      $                  M = M + 1
 | |
|                   END IF
 | |
|                END IF
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             M = N
 | |
|          END IF
 | |
| *
 | |
|          IF( MM.LT.M ) THEN
 | |
|             INFO = -13
 | |
|          ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
 | |
|             INFO = -16
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STRSNA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( SOMCON ) THEN
 | |
|             IF( .NOT.SELECT( 1 ) )
 | |
|      $         RETURN
 | |
|          END IF
 | |
|          IF( WANTS )
 | |
|      $      S( 1 ) = ONE
 | |
|          IF( WANTSP )
 | |
|      $      SEP( 1 ) = ABS( T( 1, 1 ) )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
|       KS = 0
 | |
|       PAIR = .FALSE.
 | |
|       DO 60 K = 1, N
 | |
| *
 | |
| *        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
 | |
| *
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|             GO TO 60
 | |
|          ELSE
 | |
|             IF( K.LT.N )
 | |
|      $         PAIR = T( K+1, K ).NE.ZERO
 | |
|          END IF
 | |
| *
 | |
| *        Determine whether condition numbers are required for the k-th
 | |
| *        eigenpair.
 | |
| *
 | |
|          IF( SOMCON ) THEN
 | |
|             IF( PAIR ) THEN
 | |
|                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
 | |
|      $            GO TO 60
 | |
|             ELSE
 | |
|                IF( .NOT.SELECT( K ) )
 | |
|      $            GO TO 60
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          KS = KS + 1
 | |
| *
 | |
|          IF( WANTS ) THEN
 | |
| *
 | |
| *           Compute the reciprocal condition number of the k-th
 | |
| *           eigenvalue.
 | |
| *
 | |
|             IF( .NOT.PAIR ) THEN
 | |
| *
 | |
| *              Real eigenvalue.
 | |
| *
 | |
|                PROD = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
 | |
|                RNRM = SNRM2( N, VR( 1, KS ), 1 )
 | |
|                LNRM = SNRM2( N, VL( 1, KS ), 1 )
 | |
|                S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
 | |
|             ELSE
 | |
| *
 | |
| *              Complex eigenvalue.
 | |
| *
 | |
|                PROD1 = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
 | |
|                PROD1 = PROD1 + SDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
 | |
|      $                 1 )
 | |
|                PROD2 = SDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
 | |
|                PROD2 = PROD2 - SDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
 | |
|      $                 1 )
 | |
|                RNRM = SLAPY2( SNRM2( N, VR( 1, KS ), 1 ),
 | |
|      $                SNRM2( N, VR( 1, KS+1 ), 1 ) )
 | |
|                LNRM = SLAPY2( SNRM2( N, VL( 1, KS ), 1 ),
 | |
|      $                SNRM2( N, VL( 1, KS+1 ), 1 ) )
 | |
|                COND = SLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
 | |
|                S( KS ) = COND
 | |
|                S( KS+1 ) = COND
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          IF( WANTSP ) THEN
 | |
| *
 | |
| *           Estimate the reciprocal condition number of the k-th
 | |
| *           eigenvector.
 | |
| *
 | |
| *           Copy the matrix T to the array WORK and swap the diagonal
 | |
| *           block beginning at T(k,k) to the (1,1) position.
 | |
| *
 | |
|             CALL SLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
 | |
|             IFST = K
 | |
|             ILST = 1
 | |
|             CALL STREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
 | |
|      $                   WORK( 1, N+1 ), IERR )
 | |
| *
 | |
|             IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
 | |
| *
 | |
| *              Could not swap because blocks not well separated
 | |
| *
 | |
|                SCALE = ONE
 | |
|                EST = BIGNUM
 | |
|             ELSE
 | |
| *
 | |
| *              Reordering successful
 | |
| *
 | |
|                IF( WORK( 2, 1 ).EQ.ZERO ) THEN
 | |
| *
 | |
| *                 Form C = T22 - lambda*I in WORK(2:N,2:N).
 | |
| *
 | |
|                   DO 20 I = 2, N
 | |
|                      WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
 | |
|    20             CONTINUE
 | |
|                   N2 = 1
 | |
|                   NN = N - 1
 | |
|                ELSE
 | |
| *
 | |
| *                 Triangularize the 2 by 2 block by unitary
 | |
| *                 transformation U = [  cs   i*ss ]
 | |
| *                                    [ i*ss   cs  ].
 | |
| *                 such that the (1,1) position of WORK is complex
 | |
| *                 eigenvalue lambda with positive imaginary part. (2,2)
 | |
| *                 position of WORK is the complex eigenvalue lambda
 | |
| *                 with negative imaginary  part.
 | |
| *
 | |
|                   MU = SQRT( ABS( WORK( 1, 2 ) ) )*
 | |
|      $                 SQRT( ABS( WORK( 2, 1 ) ) )
 | |
|                   DELTA = SLAPY2( MU, WORK( 2, 1 ) )
 | |
|                   CS = MU / DELTA
 | |
|                   SN = -WORK( 2, 1 ) / DELTA
 | |
| *
 | |
| *                 Form
 | |
| *
 | |
| *                 C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
 | |
| *                                          [   mu                     ]
 | |
| *                                          [         ..               ]
 | |
| *                                          [             ..           ]
 | |
| *                                          [                  mu      ]
 | |
| *                 where C**T is transpose of matrix C,
 | |
| *                 and RWORK is stored starting in the N+1-st column of
 | |
| *                 WORK.
 | |
| *
 | |
|                   DO 30 J = 3, N
 | |
|                      WORK( 2, J ) = CS*WORK( 2, J )
 | |
|                      WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
 | |
|    30             CONTINUE
 | |
|                   WORK( 2, 2 ) = ZERO
 | |
| *
 | |
|                   WORK( 1, N+1 ) = TWO*MU
 | |
|                   DO 40 I = 2, N - 1
 | |
|                      WORK( I, N+1 ) = SN*WORK( 1, I+1 )
 | |
|    40             CONTINUE
 | |
|                   N2 = 2
 | |
|                   NN = 2*( N-1 )
 | |
|                END IF
 | |
| *
 | |
| *              Estimate norm(inv(C**T))
 | |
| *
 | |
|                EST = ZERO
 | |
|                KASE = 0
 | |
|    50          CONTINUE
 | |
|                CALL SLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
 | |
|      $                      EST, KASE, ISAVE )
 | |
|                IF( KASE.NE.0 ) THEN
 | |
|                   IF( KASE.EQ.1 ) THEN
 | |
|                      IF( N2.EQ.1 ) THEN
 | |
| *
 | |
| *                       Real eigenvalue: solve C**T*x = scale*c.
 | |
| *
 | |
|                         CALL SLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
 | |
|      $                               LDWORK, DUMMY, DUMM, SCALE,
 | |
|      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
 | |
|      $                               IERR )
 | |
|                      ELSE
 | |
| *
 | |
| *                       Complex eigenvalue: solve
 | |
| *                       C**T*(p+iq) = scale*(c+id) in real arithmetic.
 | |
| *
 | |
|                         CALL SLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
 | |
|      $                               LDWORK, WORK( 1, N+1 ), MU, SCALE,
 | |
|      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
 | |
|      $                               IERR )
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      IF( N2.EQ.1 ) THEN
 | |
| *
 | |
| *                       Real eigenvalue: solve C*x = scale*c.
 | |
| *
 | |
|                         CALL SLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
 | |
|      $                               LDWORK, DUMMY, DUMM, SCALE,
 | |
|      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
 | |
|      $                               IERR )
 | |
|                      ELSE
 | |
| *
 | |
| *                       Complex eigenvalue: solve
 | |
| *                       C*(p+iq) = scale*(c+id) in real arithmetic.
 | |
| *
 | |
|                         CALL SLAQTR( .FALSE., .FALSE., N-1,
 | |
|      $                               WORK( 2, 2 ), LDWORK,
 | |
|      $                               WORK( 1, N+1 ), MU, SCALE,
 | |
|      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
 | |
|      $                               IERR )
 | |
| *
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   GO TO 50
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             SEP( KS ) = SCALE / MAX( EST, SMLNUM )
 | |
|             IF( PAIR )
 | |
|      $         SEP( KS+1 ) = SEP( KS )
 | |
|          END IF
 | |
| *
 | |
|          IF( PAIR )
 | |
|      $      KS = KS + 1
 | |
| *
 | |
|    60 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of STRSNA
 | |
| *
 | |
|       END
 |