532 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			532 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGELST + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelst.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelst.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelst.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGELST solves overdetermined or underdetermined real linear systems
 | |
| *> involving an M-by-N matrix A, or its transpose, using a QR or LQ
 | |
| *> factorization of A with compact WY representation of Q.
 | |
| *> It is assumed that A has full rank.
 | |
| *>
 | |
| *> The following options are provided:
 | |
| *>
 | |
| *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A*X ||.
 | |
| *>
 | |
| *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
 | |
| *>    an underdetermined system A * X = B.
 | |
| *>
 | |
| *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
 | |
| *>    an underdetermined system A**T * X = B.
 | |
| *>
 | |
| *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A**T * X ||.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': the linear system involves A;
 | |
| *>          = 'T': the linear system involves A**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of
 | |
| *>          columns of the matrices B and X. NRHS >=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit,
 | |
| *>            if M >= N, A is overwritten by details of its QR
 | |
| *>                       factorization as returned by DGEQRT;
 | |
| *>            if M <  N, A is overwritten by details of its LQ
 | |
| *>                       factorization as returned by DGELQT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the matrix B of right hand side vectors, stored
 | |
| *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
 | |
| *>          if TRANS = 'T'.
 | |
| *>          On exit, if INFO = 0, B is overwritten by the solution
 | |
| *>          vectors, stored columnwise:
 | |
| *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
 | |
| *>          squares solution vectors; the residual sum of squares for the
 | |
| *>          solution in each column is given by the sum of squares of
 | |
| *>          elements N+1 to M in that column;
 | |
| *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
 | |
| *>          least squares solution vectors; the residual sum of squares
 | |
| *>          for the solution in each column is given by the sum of
 | |
| *>          squares of elements M+1 to N in that column.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
 | |
| *>          For optimal performance,
 | |
| *>          LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
 | |
| *>          where MN = min(M,N) and NB is the optimum block size.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO =  i, the i-th diagonal element of the
 | |
| *>                triangular factor of A is zero, so that A does not have
 | |
| *>                full rank; the least squares solution could not be
 | |
| *>                computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleGEsolve
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  November 2022,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, TPSD
 | |
|       INTEGER            BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
 | |
|      $                   NB, NBMIN, SCLLEN
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   RWORK( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGELQT, DGEQRT, DGEMLQT, DGEMQRT, DLABAD,
 | |
|      $                   DLASCL, DLASET, DTRTRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       MN = MIN( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
 | |
|      $          THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
| *     Figure out optimal block size and optimal workspace size
 | |
| *
 | |
|       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
 | |
| *
 | |
|          TPSD = .TRUE.
 | |
|          IF( LSAME( TRANS, 'N' ) )
 | |
|      $      TPSD = .FALSE.
 | |
| *
 | |
|          NB = ILAENV( 1, 'DGELST', ' ', M, N, -1, -1 )
 | |
| *
 | |
|          MNNRHS = MAX( MN, NRHS )
 | |
|          LWOPT = MAX( 1, (MN+MNNRHS)*NB )
 | |
|          WORK( 1 ) = DBLE( LWOPT )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGELST ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | |
|          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          WORK( 1 ) = DBLE( LWOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
 | |
| *
 | |
|       IF( NB.GT.MN ) NB = MN
 | |
| *
 | |
| *     Determine the block size from the supplied LWORK
 | |
| *     ( at this stage we know that LWORK >= (minimum required workspace,
 | |
| *     but it may be less than optimal)
 | |
| *
 | |
|       NB = MIN( NB, LWORK/( MN + MNNRHS ) )
 | |
| *
 | |
| *     The minimum value of NB, when blocked code is used
 | |
| *
 | |
|       NBMIN = MAX( 2, ILAENV( 2, 'DGELST', ' ', M, N, -1, -1 ) )
 | |
| *
 | |
|       IF( NB.LT.NBMIN ) THEN
 | |
|          NB = 1
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | |
|          WORK( 1 ) = DBLE( LWOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       BROW = M
 | |
|       IF( TPSD )
 | |
|      $   BROW = N
 | |
|       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        M > N:
 | |
| *        Compute the blocked QR factorization of A,
 | |
| *        using the compact WY representation of Q,
 | |
| *        workspace at least N, optimally N*NB.
 | |
| *
 | |
|          CALL DGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
 | |
|      $                WORK( MN*NB+1 ), INFO )
 | |
| *
 | |
|          IF( .NOT.TPSD ) THEN
 | |
| *
 | |
| *           M > N, A is not transposed:
 | |
| *           Overdetermined system of equations,
 | |
| *           least-squares problem, min || A * X - B ||.
 | |
| *
 | |
| *           Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
 | |
| *           using the compact WY representation of Q,
 | |
| *           workspace at least NRHS, optimally NRHS*NB.
 | |
| *
 | |
|             CALL DGEMQRT( 'Left', 'Transpose', M, NRHS, N, NB, A, LDA,
 | |
|      $                    WORK( 1 ), NB, B, LDB, WORK( MN*NB+1 ),
 | |
|      $                    INFO )
 | |
| *
 | |
| *           Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             SCLLEN = N
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           M > N, A is transposed:
 | |
| *           Underdetermined system of equations,
 | |
| *           minimum norm solution of A**T * X = B.
 | |
| *
 | |
| *           Compute B := inv(R**T) * B in two row blocks of B.
 | |
| *
 | |
| *           Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           Block 2: Zero out all rows below the N-th row in B:
 | |
| *           B(N+1:M,1:NRHS) = ZERO
 | |
| *
 | |
|             DO  J = 1, NRHS
 | |
|                DO I = N + 1, M
 | |
|                   B( I, J ) = ZERO
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
 | |
| *           using the compact WY representation of Q,
 | |
| *           workspace at least NRHS, optimally NRHS*NB.
 | |
| *
 | |
|             CALL DGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
 | |
|      $                    A, LDA, WORK( 1 ), NB, B, LDB,
 | |
|      $                    WORK( MN*NB+1 ), INFO )
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        M < N:
 | |
| *        Compute the blocked LQ factorization of A,
 | |
| *        using the compact WY representation of Q,
 | |
| *        workspace at least M, optimally M*NB.
 | |
| *
 | |
|          CALL DGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
 | |
|      $                WORK( MN*NB+1 ), INFO )
 | |
| *
 | |
|          IF( .NOT.TPSD ) THEN
 | |
| *
 | |
| *           M < N, A is not transposed:
 | |
| *           Underdetermined system of equations,
 | |
| *           minimum norm solution of A * X = B.
 | |
| *
 | |
| *           Compute B := inv(L) * B in two row blocks of B.
 | |
| *
 | |
| *           Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           Block 2: Zero out all rows below the M-th row in B:
 | |
| *           B(M+1:N,1:NRHS) = ZERO
 | |
| *
 | |
|             DO J = 1, NRHS
 | |
|                DO I = M + 1, N
 | |
|                   B( I, J ) = ZERO
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
 | |
| *           using the compact WY representation of Q,
 | |
| *           workspace at least NRHS, optimally NRHS*NB.
 | |
| *
 | |
|             CALL DGEMLQT( 'Left', 'Transpose', N, NRHS, M, NB, A, LDA,
 | |
|      $                   WORK( 1 ), NB, B, LDB,
 | |
|      $                   WORK( MN*NB+1 ), INFO )
 | |
| *
 | |
|             SCLLEN = N
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           M < N, A is transposed:
 | |
| *           Overdetermined system of equations,
 | |
| *           least-squares problem, min || A**T * X - B ||.
 | |
| *
 | |
| *           Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
 | |
| *           using the compact WY representation of Q,
 | |
| *           workspace at least NRHS, optimally NRHS*NB.
 | |
| *
 | |
|             CALL DGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
 | |
|      $                    A, LDA, WORK( 1 ), NB, B, LDB,
 | |
|      $                    WORK( MN*NB+1), INFO )
 | |
| *
 | |
| *           Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = DBLE( LWOPT )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGELST
 | |
| *
 | |
|       END
 |