177 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPTT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPTT01( N, D, E, DF, EF, WORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), DF( * )
 | |
| *       COMPLEX*16         E( * ), EF( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
 | |
| *> factorization and computes the residual
 | |
| *>    norm(L*D*L' - A) / ( n * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGTER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DF
 | |
| *> \verbatim
 | |
| *>          DF is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the factor L from the L*D*L'
 | |
| *>          factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EF
 | |
| *> \verbatim
 | |
| *>          EF is COMPLEX*16 array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of the factor L from the
 | |
| *>          L*D*L' factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          norm(L*D*L' - A) / (n * norm(A) * EPS)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPTT01( N, D, E, DF, EF, WORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), DF( * )
 | |
|       COMPLEX*16         E( * ), EF( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       DOUBLE PRECISION   ANORM, EPS
 | |
|       COMPLEX*16         DE
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCONJG, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Construct the difference L*D*L' - A.
 | |
| *
 | |
|       WORK( 1 ) = DF( 1 ) - D( 1 )
 | |
|       DO 10 I = 1, N - 1
 | |
|          DE = DF( I )*EF( I )
 | |
|          WORK( N+I ) = DE - E( I )
 | |
|          WORK( 1+I ) = DE*DCONJG( EF( I ) ) + DF( I+1 ) - D( I+1 )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute the 1-norms of the tridiagonal matrices A and WORK.
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          ANORM = D( 1 )
 | |
|          RESID = ABS( WORK( 1 ) )
 | |
|       ELSE
 | |
|          ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
 | |
|          RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
 | |
|      $           ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
 | |
|          DO 20 I = 2, N - 1
 | |
|             ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
 | |
|             RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
 | |
|      $              ABS( WORK( N+I ) ) )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPTT01
 | |
| *
 | |
|       END
 |