410 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAED6 used by sstedc. Computes one Newton step in solution of the secular equation.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAED6 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed6.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed6.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed6.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            ORGATI
 | |
| *       INTEGER            INFO, KNITER
 | |
| *       DOUBLE PRECISION   FINIT, RHO, TAU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( 3 ), Z( 3 )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAED6 computes the positive or negative root (closest to the origin)
 | |
| *> of
 | |
| *>                  z(1)        z(2)        z(3)
 | |
| *> f(x) =   rho + --------- + ---------- + ---------
 | |
| *>                 d(1)-x      d(2)-x      d(3)-x
 | |
| *>
 | |
| *> It is assumed that
 | |
| *>
 | |
| *>       if ORGATI = .true. the root is between d(2) and d(3);
 | |
| *>       otherwise it is between d(1) and d(2)
 | |
| *>
 | |
| *> This routine will be called by DLAED4 when necessary. In most cases,
 | |
| *> the root sought is the smallest in magnitude, though it might not be
 | |
| *> in some extremely rare situations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] KNITER
 | |
| *> \verbatim
 | |
| *>          KNITER is INTEGER
 | |
| *>               Refer to DLAED4 for its significance.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ORGATI
 | |
| *> \verbatim
 | |
| *>          ORGATI is LOGICAL
 | |
| *>               If ORGATI is true, the needed root is between d(2) and
 | |
| *>               d(3); otherwise it is between d(1) and d(2).  See
 | |
| *>               DLAED4 for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is DOUBLE PRECISION
 | |
| *>               Refer to the equation f(x) above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (3)
 | |
| *>               D satisfies d(1) < d(2) < d(3).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (3)
 | |
| *>               Each of the elements in z must be positive.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] FINIT
 | |
| *> \verbatim
 | |
| *>          FINIT is DOUBLE PRECISION
 | |
| *>               The value of f at 0. It is more accurate than the one
 | |
| *>               evaluated inside this routine (if someone wants to do
 | |
| *>               so).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION
 | |
| *>               The root of the equation f(x).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>               = 0: successful exit
 | |
| *>               > 0: if INFO = 1, failure to converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  10/02/03: This version has a few statements commented out for thread
 | |
| *>  safety (machine parameters are computed on each entry). SJH.
 | |
| *>
 | |
| *>  05/10/06: Modified from a new version of Ren-Cang Li, use
 | |
| *>     Gragg-Thornton-Warner cubic convergent scheme for better stability.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ren-Cang Li, Computer Science Division, University of California
 | |
| *>     at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            ORGATI
 | |
|       INTEGER            INFO, KNITER
 | |
|       DOUBLE PRECISION   FINIT, RHO, TAU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( 3 ), Z( 3 )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXIT
 | |
|       PARAMETER          ( MAXIT = 40 )
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | |
|      $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   DSCALE( 3 ), ZSCALE( 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            SCALE
 | |
|       INTEGER            I, ITER, NITER
 | |
|       DOUBLE PRECISION   A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
 | |
|      $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
 | |
|      $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, 
 | |
|      $                   LBD, UBD
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( ORGATI ) THEN
 | |
|          LBD = D(2)
 | |
|          UBD = D(3)
 | |
|       ELSE
 | |
|          LBD = D(1)
 | |
|          UBD = D(2)
 | |
|       END IF
 | |
|       IF( FINIT .LT. ZERO )THEN
 | |
|          LBD = ZERO
 | |
|       ELSE
 | |
|          UBD = ZERO 
 | |
|       END IF
 | |
| *
 | |
|       NITER = 1
 | |
|       TAU = ZERO
 | |
|       IF( KNITER.EQ.2 ) THEN
 | |
|          IF( ORGATI ) THEN
 | |
|             TEMP = ( D( 3 )-D( 2 ) ) / TWO
 | |
|             C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
 | |
|             A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
 | |
|             B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
 | |
|          ELSE
 | |
|             TEMP = ( D( 1 )-D( 2 ) ) / TWO
 | |
|             C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
 | |
|             A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
 | |
|             B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
 | |
|          END IF
 | |
|          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
 | |
|          A = A / TEMP
 | |
|          B = B / TEMP
 | |
|          C = C / TEMP
 | |
|          IF( C.EQ.ZERO ) THEN
 | |
|             TAU = B / A
 | |
|          ELSE IF( A.LE.ZERO ) THEN
 | |
|             TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|          ELSE
 | |
|             TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|          END IF
 | |
|          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
 | |
|      $      TAU = ( LBD+UBD )/TWO
 | |
|          IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
 | |
|             TAU = ZERO
 | |
|          ELSE
 | |
|             TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
 | |
|      $                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
 | |
|      $                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
 | |
|             IF( TEMP .LE. ZERO )THEN
 | |
|                LBD = TAU
 | |
|             ELSE
 | |
|                UBD = TAU
 | |
|             END IF
 | |
|             IF( ABS( FINIT ).LE.ABS( TEMP ) )
 | |
|      $         TAU = ZERO
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     get machine parameters for possible scaling to avoid overflow
 | |
| *
 | |
| *     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
 | |
| *     SMINV2, EPS are not SAVEd anymore between one call to the
 | |
| *     others but recomputed at each call
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       BASE = DLAMCH( 'Base' )
 | |
|       SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) /
 | |
|      $         THREE ) )
 | |
|       SMINV1 = ONE / SMALL1
 | |
|       SMALL2 = SMALL1*SMALL1
 | |
|       SMINV2 = SMINV1*SMINV1
 | |
| *
 | |
| *     Determine if scaling of inputs necessary to avoid overflow
 | |
| *     when computing 1/TEMP**3
 | |
| *
 | |
|       IF( ORGATI ) THEN
 | |
|          TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
 | |
|       ELSE
 | |
|          TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
 | |
|       END IF
 | |
|       SCALE = .FALSE.
 | |
|       IF( TEMP.LE.SMALL1 ) THEN
 | |
|          SCALE = .TRUE.
 | |
|          IF( TEMP.LE.SMALL2 ) THEN
 | |
| *
 | |
| *        Scale up by power of radix nearest 1/SAFMIN**(2/3)
 | |
| *
 | |
|             SCLFAC = SMINV2
 | |
|             SCLINV = SMALL2
 | |
|          ELSE
 | |
| *
 | |
| *        Scale up by power of radix nearest 1/SAFMIN**(1/3)
 | |
| *
 | |
|             SCLFAC = SMINV1
 | |
|             SCLINV = SMALL1
 | |
|          END IF
 | |
| *
 | |
| *        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
 | |
| *
 | |
|          DO 10 I = 1, 3
 | |
|             DSCALE( I ) = D( I )*SCLFAC
 | |
|             ZSCALE( I ) = Z( I )*SCLFAC
 | |
|    10    CONTINUE
 | |
|          TAU = TAU*SCLFAC
 | |
|          LBD = LBD*SCLFAC
 | |
|          UBD = UBD*SCLFAC
 | |
|       ELSE
 | |
| *
 | |
| *        Copy D and Z to DSCALE and ZSCALE
 | |
| *
 | |
|          DO 20 I = 1, 3
 | |
|             DSCALE( I ) = D( I )
 | |
|             ZSCALE( I ) = Z( I )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       FC = ZERO
 | |
|       DF = ZERO
 | |
|       DDF = ZERO
 | |
|       DO 30 I = 1, 3
 | |
|          TEMP = ONE / ( DSCALE( I )-TAU )
 | |
|          TEMP1 = ZSCALE( I )*TEMP
 | |
|          TEMP2 = TEMP1*TEMP
 | |
|          TEMP3 = TEMP2*TEMP
 | |
|          FC = FC + TEMP1 / DSCALE( I )
 | |
|          DF = DF + TEMP2
 | |
|          DDF = DDF + TEMP3
 | |
|    30 CONTINUE
 | |
|       F = FINIT + TAU*FC
 | |
| *
 | |
|       IF( ABS( F ).LE.ZERO )
 | |
|      $   GO TO 60
 | |
|       IF( F .LE. ZERO )THEN
 | |
|          LBD = TAU
 | |
|       ELSE
 | |
|          UBD = TAU
 | |
|       END IF
 | |
| *
 | |
| *        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
 | |
| *                            scheme
 | |
| *
 | |
| *     It is not hard to see that
 | |
| *
 | |
| *           1) Iterations will go up monotonically
 | |
| *              if FINIT < 0;
 | |
| *
 | |
| *           2) Iterations will go down monotonically
 | |
| *              if FINIT > 0.
 | |
| *
 | |
|       ITER = NITER + 1
 | |
| *
 | |
|       DO 50 NITER = ITER, MAXIT
 | |
| *
 | |
|          IF( ORGATI ) THEN
 | |
|             TEMP1 = DSCALE( 2 ) - TAU
 | |
|             TEMP2 = DSCALE( 3 ) - TAU
 | |
|          ELSE
 | |
|             TEMP1 = DSCALE( 1 ) - TAU
 | |
|             TEMP2 = DSCALE( 2 ) - TAU
 | |
|          END IF
 | |
|          A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
 | |
|          B = TEMP1*TEMP2*F
 | |
|          C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
 | |
|          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
 | |
|          A = A / TEMP
 | |
|          B = B / TEMP
 | |
|          C = C / TEMP
 | |
|          IF( C.EQ.ZERO ) THEN
 | |
|             ETA = B / A
 | |
|          ELSE IF( A.LE.ZERO ) THEN
 | |
|             ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|          ELSE
 | |
|             ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|          END IF
 | |
|          IF( F*ETA.GE.ZERO ) THEN
 | |
|             ETA = -F / DF
 | |
|          END IF
 | |
| *
 | |
|          TAU = TAU + ETA
 | |
|          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
 | |
|      $      TAU = ( LBD + UBD )/TWO 
 | |
| *
 | |
|          FC = ZERO
 | |
|          ERRETM = ZERO
 | |
|          DF = ZERO
 | |
|          DDF = ZERO
 | |
|          DO 40 I = 1, 3
 | |
|             IF ( ( DSCALE( I )-TAU ).NE.ZERO ) THEN
 | |
|                TEMP = ONE / ( DSCALE( I )-TAU )
 | |
|                TEMP1 = ZSCALE( I )*TEMP
 | |
|                TEMP2 = TEMP1*TEMP
 | |
|                TEMP3 = TEMP2*TEMP
 | |
|                TEMP4 = TEMP1 / DSCALE( I )
 | |
|                FC = FC + TEMP4
 | |
|                ERRETM = ERRETM + ABS( TEMP4 )
 | |
|                DF = DF + TEMP2
 | |
|                DDF = DDF + TEMP3
 | |
|             ELSE
 | |
|               GO TO 60
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|          F = FINIT + TAU*FC
 | |
|          ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
 | |
|      $            ABS( TAU )*DF
 | |
|          IF( ABS( F ).LE.EPS*ERRETM )
 | |
|      $      GO TO 60
 | |
|          IF( F .LE. ZERO )THEN
 | |
|             LBD = TAU
 | |
|          ELSE
 | |
|             UBD = TAU
 | |
|          END IF
 | |
|    50 CONTINUE
 | |
|       INFO = 1
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( SCALE )
 | |
|      $   TAU = TAU*SCLINV
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAED6
 | |
| *
 | |
|       END
 |