322 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHEGST
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHEGV + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegv.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegv.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegv.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 | |
| *                         LWORK, RWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), W( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHEGV computes all the eigenvalues, and optionally, the eigenvectors
 | |
| *> of a complex generalized Hermitian-definite eigenproblem, of the form
 | |
| *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 | |
| *> Here A and B are assumed to be Hermitian and B is also
 | |
| *> positive definite.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the problem type to be solved:
 | |
| *>          = 1:  A*x = (lambda)*B*x
 | |
| *>          = 2:  A*B*x = (lambda)*x
 | |
| *>          = 3:  B*A*x = (lambda)*x
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>
 | |
| *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | |
| *>          matrix Z of eigenvectors.  The eigenvectors are normalized
 | |
| *>          as follows:
 | |
| *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
 | |
| *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
 | |
| *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
 | |
| *>          or the lower triangle (if UPLO='L') of A, including the
 | |
| *>          diagonal, is destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, N)
 | |
| *>          On entry, the Hermitian positive definite matrix B.
 | |
| *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
 | |
| *>          contains the upper triangular part of the matrix B.
 | |
| *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
 | |
| *>          contains the lower triangular part of the matrix B.
 | |
| *>
 | |
| *>          On exit, if INFO <= N, the part of B containing the matrix is
 | |
| *>          overwritten by the triangular factor U or L from the Cholesky
 | |
| *>          factorization B = U**H*U or B = L*L**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= max(1,2*N-1).
 | |
| *>          For optimal efficiency, LWORK >= (NB+1)*N,
 | |
| *>          where NB is the blocksize for CHETRD returned by ILAENV.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(1, 3*N-2))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  CPOTRF or CHEEV returned an error code:
 | |
| *>             <= N:  if INFO = i, CHEEV failed to converge;
 | |
| *>                    i off-diagonal elements of an intermediate
 | |
| *>                    tridiagonal form did not converge to zero;
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | |
| *>                    minor of order i of B is not positive definite.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexHEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
 | |
|      $                  LWORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), W( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER, WANTZ
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            LWKOPT, NB, NEIG
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHEEV, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ. -1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
 | |
|          LWKOPT = MAX( 1, ( NB + 1 )*N )
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -11
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHEGV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a Cholesky factorization of B.
 | |
| *
 | |
|       CALL CPOTRF( UPLO, N, B, LDB, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem and solve.
 | |
| *
 | |
|       CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
|       CALL CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
| *
 | |
| *        Backtransform eigenvectors to the original problem.
 | |
| *
 | |
|          NEIG = N
 | |
|          IF( INFO.GT.0 )
 | |
|      $      NEIG = INFO - 1
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'C'
 | |
|             END IF
 | |
| *
 | |
|             CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
 | |
|      $                  B, LDB, A, LDA )
 | |
| *
 | |
|          ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *           For B*A*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = L*y or U**H*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'C'
 | |
|             ELSE
 | |
|                TRANS = 'N'
 | |
|             END IF
 | |
| *
 | |
|             CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
 | |
|      $                  B, LDB, A, LDA )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHEGV
 | |
| *
 | |
|       END
 |