426 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by sbdsqr.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLASQ4 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq4.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq4.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq4.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
 | 
						|
*                          DN1, DN2, TAU, TTYPE, G )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            I0, N0, N0IN, PP, TTYPE
 | 
						|
*       REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               Z( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLASQ4 computes an approximation TAU to the smallest eigenvalue
 | 
						|
*> using values of d from the previous transform.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] I0
 | 
						|
*> \verbatim
 | 
						|
*>          I0 is INTEGER
 | 
						|
*>        First index.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N0
 | 
						|
*> \verbatim
 | 
						|
*>          N0 is INTEGER
 | 
						|
*>        Last index.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension ( 4*N )
 | 
						|
*>        Z holds the qd array.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PP
 | 
						|
*> \verbatim
 | 
						|
*>          PP is INTEGER
 | 
						|
*>        PP=0 for ping, PP=1 for pong.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N0IN
 | 
						|
*> \verbatim
 | 
						|
*>          N0IN is INTEGER
 | 
						|
*>        The value of N0 at start of EIGTEST.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DMIN
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN is REAL
 | 
						|
*>        Minimum value of d.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DMIN1
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN1 is REAL
 | 
						|
*>        Minimum value of d, excluding D( N0 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DMIN2
 | 
						|
*> \verbatim
 | 
						|
*>          DMIN2 is REAL
 | 
						|
*>        Minimum value of d, excluding D( N0 ) and D( N0-1 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DN
 | 
						|
*> \verbatim
 | 
						|
*>          DN is REAL
 | 
						|
*>        d(N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DN1
 | 
						|
*> \verbatim
 | 
						|
*>          DN1 is REAL
 | 
						|
*>        d(N-1)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DN2
 | 
						|
*> \verbatim
 | 
						|
*>          DN2 is REAL
 | 
						|
*>        d(N-2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL
 | 
						|
*>        This is the shift.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          TTYPE is INTEGER
 | 
						|
*>        Shift type.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] G
 | 
						|
*> \verbatim
 | 
						|
*>          G is REAL
 | 
						|
*>        G is passed as an argument in order to save its value between
 | 
						|
*>        calls to SLASQ4.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  CNST1 = 9/16
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
 | 
						|
     $                   DN1, DN2, TAU, TTYPE, G )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            I0, N0, N0IN, PP, TTYPE
 | 
						|
      REAL               DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               Z( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               CNST1, CNST2, CNST3
 | 
						|
      PARAMETER          ( CNST1 = 0.5630E0, CNST2 = 1.010E0,
 | 
						|
     $                   CNST3 = 1.050E0 )
 | 
						|
      REAL               QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
 | 
						|
      PARAMETER          ( QURTR = 0.250E0, THIRD = 0.3330E0,
 | 
						|
     $                   HALF = 0.50E0, ZERO = 0.0E0, ONE = 1.0E0,
 | 
						|
     $                   TWO = 2.0E0, HUNDRD = 100.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I4, NN, NP
 | 
						|
      REAL               A2, B1, B2, GAM, GAP1, GAP2, S
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     A negative DMIN forces the shift to take that absolute value
 | 
						|
*     TTYPE records the type of shift.
 | 
						|
*
 | 
						|
      IF( DMIN.LE.ZERO ) THEN
 | 
						|
         TAU = -DMIN
 | 
						|
         TTYPE = -1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*       
 | 
						|
      NN = 4*N0 + PP
 | 
						|
      IF( N0IN.EQ.N0 ) THEN
 | 
						|
*
 | 
						|
*        No eigenvalues deflated.
 | 
						|
*
 | 
						|
         IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
 | 
						|
*
 | 
						|
            B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
 | 
						|
            B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
 | 
						|
            A2 = Z( NN-7 ) + Z( NN-5 )
 | 
						|
*
 | 
						|
*           Cases 2 and 3.
 | 
						|
*
 | 
						|
            IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
 | 
						|
               GAP2 = DMIN2 - A2 - DMIN2*QURTR
 | 
						|
               IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
 | 
						|
                  GAP1 = A2 - DN - ( B2 / GAP2 )*B2
 | 
						|
               ELSE
 | 
						|
                  GAP1 = A2 - DN - ( B1+B2 )
 | 
						|
               END IF
 | 
						|
               IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
 | 
						|
                  S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
 | 
						|
                  TTYPE = -2
 | 
						|
               ELSE
 | 
						|
                  S = ZERO
 | 
						|
                  IF( DN.GT.B1 )
 | 
						|
     $               S = DN - B1
 | 
						|
                  IF( A2.GT.( B1+B2 ) )
 | 
						|
     $               S = MIN( S, A2-( B1+B2 ) )
 | 
						|
                  S = MAX( S, THIRD*DMIN )
 | 
						|
                  TTYPE = -3
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Case 4.
 | 
						|
*
 | 
						|
               TTYPE = -4
 | 
						|
               S = QURTR*DMIN
 | 
						|
               IF( DMIN.EQ.DN ) THEN
 | 
						|
                  GAM = DN
 | 
						|
                  A2 = ZERO
 | 
						|
                  IF( Z( NN-5 ) .GT. Z( NN-7 ) )
 | 
						|
     $               RETURN
 | 
						|
                  B2 = Z( NN-5 ) / Z( NN-7 )
 | 
						|
                  NP = NN - 9
 | 
						|
               ELSE
 | 
						|
                  NP = NN - 2*PP
 | 
						|
                  B2 = Z( NP-2 )
 | 
						|
                  GAM = DN1
 | 
						|
                  IF( Z( NP-4 ) .GT. Z( NP-2 ) )
 | 
						|
     $               RETURN
 | 
						|
                  A2 = Z( NP-4 ) / Z( NP-2 )
 | 
						|
                  IF( Z( NN-9 ) .GT. Z( NN-11 ) )
 | 
						|
     $               RETURN
 | 
						|
                  B2 = Z( NN-9 ) / Z( NN-11 )
 | 
						|
                  NP = NN - 13
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Approximate contribution to norm squared from I < NN-1.
 | 
						|
*
 | 
						|
               A2 = A2 + B2
 | 
						|
               DO 10 I4 = NP, 4*I0 - 1 + PP, -4
 | 
						|
                  IF( B2.EQ.ZERO )
 | 
						|
     $               GO TO 20
 | 
						|
                  B1 = B2
 | 
						|
                  IF( Z( I4 ) .GT. Z( I4-2 ) )
 | 
						|
     $               RETURN
 | 
						|
                  B2 = B2*( Z( I4 ) / Z( I4-2 ) )
 | 
						|
                  A2 = A2 + B2
 | 
						|
                  IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
 | 
						|
     $               GO TO 20
 | 
						|
   10          CONTINUE
 | 
						|
   20          CONTINUE
 | 
						|
               A2 = CNST3*A2
 | 
						|
*
 | 
						|
*              Rayleigh quotient residual bound.
 | 
						|
*
 | 
						|
               IF( A2.LT.CNST1 )
 | 
						|
     $            S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
 | 
						|
            END IF
 | 
						|
         ELSE IF( DMIN.EQ.DN2 ) THEN
 | 
						|
*
 | 
						|
*           Case 5.
 | 
						|
*
 | 
						|
            TTYPE = -5
 | 
						|
            S = QURTR*DMIN
 | 
						|
*
 | 
						|
*           Compute contribution to norm squared from I > NN-2.
 | 
						|
*
 | 
						|
            NP = NN - 2*PP
 | 
						|
            B1 = Z( NP-2 )
 | 
						|
            B2 = Z( NP-6 )
 | 
						|
            GAM = DN2
 | 
						|
            IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
 | 
						|
     $         RETURN
 | 
						|
            A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
 | 
						|
*
 | 
						|
*           Approximate contribution to norm squared from I < NN-2.
 | 
						|
*
 | 
						|
            IF( N0-I0.GT.2 ) THEN
 | 
						|
               B2 = Z( NN-13 ) / Z( NN-15 )
 | 
						|
               A2 = A2 + B2
 | 
						|
               DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
 | 
						|
                  IF( B2.EQ.ZERO )
 | 
						|
     $               GO TO 40
 | 
						|
                  B1 = B2
 | 
						|
                  IF( Z( I4 ) .GT. Z( I4-2 ) )
 | 
						|
     $               RETURN
 | 
						|
                  B2 = B2*( Z( I4 ) / Z( I4-2 ) )
 | 
						|
                  A2 = A2 + B2
 | 
						|
                  IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) 
 | 
						|
     $               GO TO 40
 | 
						|
   30          CONTINUE
 | 
						|
   40          CONTINUE
 | 
						|
               A2 = CNST3*A2
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( A2.LT.CNST1 )
 | 
						|
     $         S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Case 6, no information to guide us.
 | 
						|
*
 | 
						|
            IF( TTYPE.EQ.-6 ) THEN
 | 
						|
               G = G + THIRD*( ONE-G )
 | 
						|
            ELSE IF( TTYPE.EQ.-18 ) THEN
 | 
						|
               G = QURTR*THIRD
 | 
						|
            ELSE
 | 
						|
               G = QURTR
 | 
						|
            END IF
 | 
						|
            S = G*DMIN
 | 
						|
            TTYPE = -6
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
 | 
						|
*
 | 
						|
*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
 | 
						|
*
 | 
						|
         IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN 
 | 
						|
*
 | 
						|
*           Cases 7 and 8.
 | 
						|
*
 | 
						|
            TTYPE = -7
 | 
						|
            S = THIRD*DMIN1
 | 
						|
            IF( Z( NN-5 ).GT.Z( NN-7 ) )
 | 
						|
     $         RETURN
 | 
						|
            B1 = Z( NN-5 ) / Z( NN-7 )
 | 
						|
            B2 = B1
 | 
						|
            IF( B2.EQ.ZERO )
 | 
						|
     $         GO TO 60
 | 
						|
            DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
 | 
						|
               A2 = B1
 | 
						|
               IF( Z( I4 ).GT.Z( I4-2 ) )
 | 
						|
     $            RETURN
 | 
						|
               B1 = B1*( Z( I4 ) / Z( I4-2 ) )
 | 
						|
               B2 = B2 + B1
 | 
						|
               IF( HUNDRD*MAX( B1, A2 ).LT.B2 ) 
 | 
						|
     $            GO TO 60
 | 
						|
   50       CONTINUE
 | 
						|
   60       CONTINUE
 | 
						|
            B2 = SQRT( CNST3*B2 )
 | 
						|
            A2 = DMIN1 / ( ONE+B2**2 )
 | 
						|
            GAP2 = HALF*DMIN2 - A2
 | 
						|
            IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
 | 
						|
               S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
 | 
						|
            ELSE 
 | 
						|
               S = MAX( S, A2*( ONE-CNST2*B2 ) )
 | 
						|
               TTYPE = -8
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Case 9.
 | 
						|
*
 | 
						|
            S = QURTR*DMIN1
 | 
						|
            IF( DMIN1.EQ.DN1 )
 | 
						|
     $         S = HALF*DMIN1
 | 
						|
            TTYPE = -9
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
 | 
						|
*
 | 
						|
*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
 | 
						|
*
 | 
						|
*        Cases 10 and 11.
 | 
						|
*
 | 
						|
         IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN 
 | 
						|
            TTYPE = -10
 | 
						|
            S = THIRD*DMIN2
 | 
						|
            IF( Z( NN-5 ).GT.Z( NN-7 ) )
 | 
						|
     $         RETURN
 | 
						|
            B1 = Z( NN-5 ) / Z( NN-7 )
 | 
						|
            B2 = B1
 | 
						|
            IF( B2.EQ.ZERO )
 | 
						|
     $         GO TO 80
 | 
						|
            DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
 | 
						|
               IF( Z( I4 ).GT.Z( I4-2 ) )
 | 
						|
     $            RETURN
 | 
						|
               B1 = B1*( Z( I4 ) / Z( I4-2 ) )
 | 
						|
               B2 = B2 + B1
 | 
						|
               IF( HUNDRD*B1.LT.B2 )
 | 
						|
     $            GO TO 80
 | 
						|
   70       CONTINUE
 | 
						|
   80       CONTINUE
 | 
						|
            B2 = SQRT( CNST3*B2 )
 | 
						|
            A2 = DMIN2 / ( ONE+B2**2 )
 | 
						|
            GAP2 = Z( NN-7 ) + Z( NN-9 ) -
 | 
						|
     $             SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
 | 
						|
            IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
 | 
						|
               S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
 | 
						|
            ELSE 
 | 
						|
               S = MAX( S, A2*( ONE-CNST2*B2 ) )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            S = QURTR*DMIN2
 | 
						|
            TTYPE = -11
 | 
						|
         END IF
 | 
						|
      ELSE IF( N0IN.GT.( N0+2 ) ) THEN
 | 
						|
*
 | 
						|
*        Case 12, more than two eigenvalues deflated. No information.
 | 
						|
*
 | 
						|
         S = ZERO 
 | 
						|
         TTYPE = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      TAU = S
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLASQ4
 | 
						|
*
 | 
						|
      END
 |