247 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPOTRF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DPOTRF + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotrf.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotrf.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotrf.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPOTRF computes the Cholesky factorization of a real symmetric
 | 
						|
*> positive definite matrix A.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = U**T * U,  if UPLO = 'U', or
 | 
						|
*>    A = L  * L**T,  if UPLO = 'L',
 | 
						|
*> where U is an upper triangular matrix and L is lower triangular.
 | 
						|
*>
 | 
						|
*> This is the block version of the algorithm, calling Level 3 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          N-by-N upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading N-by-N lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
*>          factorization A = U**T*U or A = L*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the leading minor of order i is not
 | 
						|
*>                positive definite, and the factorization could not be
 | 
						|
*>                completed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup doublePOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, JB, NB
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DPOTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment.
 | 
						|
*
 | 
						|
      NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         CALL DPOTF2( UPLO, N, A, LDA, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = U**T*U.
 | 
						|
*
 | 
						|
            DO 10 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
               CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
 | 
						|
     $                     A( 1, J ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Compute the current block row.
 | 
						|
*
 | 
						|
                  CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
 | 
						|
     $                        J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
 | 
						|
     $                        LDA, ONE, A( J, J+JB ), LDA )
 | 
						|
                  CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
 | 
						|
     $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
 | 
						|
     $                        A( J, J+JB ), LDA )
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = L*L**T.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
               CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
 | 
						|
     $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
 | 
						|
               CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Compute the current block column.
 | 
						|
*
 | 
						|
                  CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 | 
						|
     $                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
 | 
						|
     $                        LDA, ONE, A( J+JB, J ), LDA )
 | 
						|
                  CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
 | 
						|
     $                        N-J-JB+1, JB, ONE, A( J, J ), LDA,
 | 
						|
     $                        A( J+JB, J ), LDA )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      GO TO 40
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      INFO = INFO + J - 1
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPOTRF
 | 
						|
*
 | 
						|
      END
 |