204 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			204 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLARFG generates an elementary reflector (Householder matrix).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLARFG + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfg.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfg.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfg.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INCX, N
 | 
						|
*       COMPLEX            ALPHA, TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            X( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLARFG generates a complex elementary reflector H of order n, such
 | 
						|
*> that
 | 
						|
*>
 | 
						|
*>       H**H * ( alpha ) = ( beta ),   H**H * H = I.
 | 
						|
*>              (   x   )   (   0  )
 | 
						|
*>
 | 
						|
*> where alpha and beta are scalars, with beta real, and x is an
 | 
						|
*> (n-1)-element complex vector. H is represented in the form
 | 
						|
*>
 | 
						|
*>       H = I - tau * ( 1 ) * ( 1 v**H ) ,
 | 
						|
*>                     ( v )
 | 
						|
*>
 | 
						|
*> where tau is a complex scalar and v is a complex (n-1)-element
 | 
						|
*> vector. Note that H is not hermitian.
 | 
						|
*>
 | 
						|
*> If the elements of x are all zero and alpha is real, then tau = 0
 | 
						|
*> and H is taken to be the unit matrix.
 | 
						|
*>
 | 
						|
*> Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the elementary reflector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX
 | 
						|
*>          On entry, the value alpha.
 | 
						|
*>          On exit, it is overwritten with the value beta.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension
 | 
						|
*>                         (1+(N-2)*abs(INCX))
 | 
						|
*>          On entry, the vector x.
 | 
						|
*>          On exit, it is overwritten with the vector v.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX
 | 
						|
*> \verbatim
 | 
						|
*>          INCX is INTEGER
 | 
						|
*>          The increment between elements of X. INCX > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX
 | 
						|
*>          The value tau.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCX, N
 | 
						|
      COMPLEX            ALPHA, TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, KNT
 | 
						|
      REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SCNRM2, SLAMCH, SLAPY3
 | 
						|
      COMPLEX            CLADIV
 | 
						|
      EXTERNAL           SCNRM2, SLAMCH, SLAPY3, CLADIV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CSCAL, CSSCAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         TAU = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      XNORM = SCNRM2( N-1, X, INCX )
 | 
						|
      ALPHR = REAL( ALPHA )
 | 
						|
      ALPHI = AIMAG( ALPHA )
 | 
						|
*
 | 
						|
      IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        H  =  I
 | 
						|
*
 | 
						|
         TAU = ZERO
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        general case
 | 
						|
*
 | 
						|
         BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | 
						|
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
 | 
						|
         RSAFMN = ONE / SAFMIN
 | 
						|
*
 | 
						|
         KNT = 0
 | 
						|
         IF( ABS( BETA ).LT.SAFMIN ) THEN
 | 
						|
*
 | 
						|
*           XNORM, BETA may be inaccurate; scale X and recompute them
 | 
						|
*
 | 
						|
   10       CONTINUE
 | 
						|
            KNT = KNT + 1
 | 
						|
            CALL CSSCAL( N-1, RSAFMN, X, INCX )
 | 
						|
            BETA = BETA*RSAFMN
 | 
						|
            ALPHI = ALPHI*RSAFMN
 | 
						|
            ALPHR = ALPHR*RSAFMN
 | 
						|
            IF( ABS( BETA ).LT.SAFMIN )
 | 
						|
     $         GO TO 10
 | 
						|
*
 | 
						|
*           New BETA is at most 1, at least SAFMIN
 | 
						|
*
 | 
						|
            XNORM = SCNRM2( N-1, X, INCX )
 | 
						|
            ALPHA = CMPLX( ALPHR, ALPHI )
 | 
						|
            BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 | 
						|
         END IF
 | 
						|
         TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
 | 
						|
         ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
 | 
						|
         CALL CSCAL( N-1, ALPHA, X, INCX )
 | 
						|
*
 | 
						|
*        If ALPHA is subnormal, it may lose relative accuracy
 | 
						|
*
 | 
						|
         DO 20 J = 1, KNT
 | 
						|
            BETA = BETA*SAFMIN
 | 
						|
 20      CONTINUE
 | 
						|
         ALPHA = BETA
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLARFG
 | 
						|
*
 | 
						|
      END
 |