195 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGELQ2 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelq2.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelq2.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelq2.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGELQ2 computes an LQ factorization of a complex m by n matrix A:
 | 
						|
*> A = L * Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the m by n matrix A.
 | 
						|
*>          On exit, the elements on and below the diagonal of the array
 | 
						|
*>          contain the m by min(m,n) lower trapezoidal matrix L (L is
 | 
						|
*>          lower triangular if m <= n); the elements above the diagonal,
 | 
						|
*>          with the array TAU, represent the unitary matrix Q as a
 | 
						|
*>          product of elementary reflectors (see Further Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors (see Further
 | 
						|
*>          Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix Q is represented as a product of elementary reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**H
 | 
						|
*>
 | 
						|
*>  where tau is a complex scalar, and v is a complex vector with
 | 
						|
*>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
 | 
						|
*>  A(i,i+1:n), and tau in TAU(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, K
 | 
						|
      COMPLEX            ALPHA
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACGV, CLARF, CLARFG, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGELQ2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      K = MIN( M, N )
 | 
						|
*
 | 
						|
      DO 10 I = 1, K
 | 
						|
*
 | 
						|
*        Generate elementary reflector H(i) to annihilate A(i,i+1:n)
 | 
						|
*
 | 
						|
         CALL CLACGV( N-I+1, A( I, I ), LDA )
 | 
						|
         ALPHA = A( I, I )
 | 
						|
         CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
 | 
						|
     $                TAU( I ) )
 | 
						|
         IF( I.LT.M ) THEN
 | 
						|
*
 | 
						|
*           Apply H(i) to A(i+1:m,i:n) from the right
 | 
						|
*
 | 
						|
            A( I, I ) = ONE
 | 
						|
            CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
 | 
						|
     $                  A( I+1, I ), LDA, WORK )
 | 
						|
         END IF
 | 
						|
         A( I, I ) = ALPHA
 | 
						|
         CALL CLACGV( N-I+1, A( I, I ), LDA )
 | 
						|
   10 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGELQ2
 | 
						|
*
 | 
						|
      END
 |