248 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZPPT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZPPT01( UPLO, N, A, AFAC, RWORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( * ), AFAC( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZPPT01 reconstructs a Hermitian positive definite packed matrix A
 | |
| *> from its L*L' or U'*U factorization and computes the residual
 | |
| *>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | |
| *>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon, L' is the conjugate transpose of
 | |
| *> L, and U' is the conjugate transpose of U.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The original Hermitian matrix A, stored as a packed
 | |
| *>          triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the factor L or U from the L*L' or U'*U
 | |
| *>          factorization of A, stored as a packed triangular matrix.
 | |
| *>          Overwritten with the reconstructed matrix, and then with the
 | |
| *>          difference L*L' - A (or U'*U - A).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZPPT01( UPLO, N, A, AFAC, RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( * ), AFAC( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, K, KC
 | |
|       DOUBLE PRECISION   ANORM, EPS, TR
 | |
|       COMPLEX*16         TC
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANHP
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANHP, ZDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZHPR, ZSCAL, ZTPMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DIMAG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check the imaginary parts of the diagonal elements and return with
 | |
| *     an error code if any are nonzero.
 | |
| *
 | |
|       KC = 1
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO 10 K = 1, N
 | |
|             IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN
 | |
|                RESID = ONE / EPS
 | |
|                RETURN
 | |
|             END IF
 | |
|             KC = KC + K + 1
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
|          DO 20 K = 1, N
 | |
|             IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN
 | |
|                RESID = ONE / EPS
 | |
|                RETURN
 | |
|             END IF
 | |
|             KC = KC + N - K + 1
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the product U'*U, overwriting U.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          KC = ( N*( N-1 ) ) / 2 + 1
 | |
|          DO 30 K = N, 1, -1
 | |
| *
 | |
| *           Compute the (K,K) element of the result.
 | |
| *
 | |
|             TR = DBLE( ZDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 ) )
 | |
|             AFAC( KC+K-1 ) = TR
 | |
| *
 | |
| *           Compute the rest of column K.
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                CALL ZTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
 | |
|      $                     AFAC( KC ), 1 )
 | |
|                KC = KC - ( K-1 )
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Compute the difference  L*L' - A
 | |
| *
 | |
|          KC = 1
 | |
|          DO 50 K = 1, N
 | |
|             DO 40 I = 1, K - 1
 | |
|                AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 )
 | |
|    40       CONTINUE
 | |
|             AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - DBLE( A( KC+K-1 ) )
 | |
|             KC = KC + K
 | |
|    50    CONTINUE
 | |
| *
 | |
| *     Compute the product L*L', overwriting L.
 | |
| *
 | |
|       ELSE
 | |
|          KC = ( N*( N+1 ) ) / 2
 | |
|          DO 60 K = N, 1, -1
 | |
| *
 | |
| *           Add a multiple of column K of the factor L to each of
 | |
| *           columns K+1 through N.
 | |
| *
 | |
|             IF( K.LT.N )
 | |
|      $         CALL ZHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
 | |
|      $                    AFAC( KC+N-K+1 ) )
 | |
| *
 | |
| *           Scale column K by the diagonal element.
 | |
| *
 | |
|             TC = AFAC( KC )
 | |
|             CALL ZSCAL( N-K+1, TC, AFAC( KC ), 1 )
 | |
| *
 | |
|             KC = KC - ( N-K+2 )
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        Compute the difference  U'*U - A
 | |
| *
 | |
|          KC = 1
 | |
|          DO 80 K = 1, N
 | |
|             AFAC( KC ) = AFAC( KC ) - DBLE( A( KC ) )
 | |
|             DO 70 I = K + 1, N
 | |
|                AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K )
 | |
|    70       CONTINUE
 | |
|             KC = KC + N - K + 1
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = ZLANHP( '1', UPLO, N, AFAC, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZPPT01
 | |
| *
 | |
|       END
 |