157 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE ZGETRFF( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK routine (version 3.0) --
 | 
						|
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
 | 
						|
*     Courant Institute, Argonne National Lab, and Rice University
 | 
						|
*     September 30, 1994
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  ZGETRF computes an LU factorization of a general M-by-N matrix A
 | 
						|
*  using partial pivoting with row interchanges.
 | 
						|
*
 | 
						|
*  The factorization has the form
 | 
						|
*     A = P * L * U
 | 
						|
*  where P is a permutation matrix, L is lower triangular with unit
 | 
						|
*  diagonal elements (lower trapezoidal if m > n), and U is upper
 | 
						|
*  triangular (upper trapezoidal if m < n).
 | 
						|
*
 | 
						|
*  This is the right-looking Level 3 BLAS version of the algorithm.
 | 
						|
*
 | 
						|
*  Arguments
 | 
						|
*  =========
 | 
						|
*
 | 
						|
*  M       (input) INTEGER
 | 
						|
*          The number of rows of the matrix A.  M >= 0.
 | 
						|
*
 | 
						|
*  N       (input) INTEGER
 | 
						|
*          The number of columns of the matrix A.  N >= 0.
 | 
						|
*
 | 
						|
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*          On entry, the M-by-N matrix to be factored.
 | 
						|
*          On exit, the factors L and U from the factorization
 | 
						|
*          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
*
 | 
						|
*  LDA     (input) INTEGER
 | 
						|
*          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*
 | 
						|
*  IPIV    (output) INTEGER array, dimension (min(M,N))
 | 
						|
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*          matrix was interchanged with row IPIV(i).
 | 
						|
*
 | 
						|
*  INFO    (output) INTEGER
 | 
						|
*          = 0:  successful exit
 | 
						|
*          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 | 
						|
*                has been completed, but the factor U is exactly
 | 
						|
*                singular, and division by zero will occur if it is used
 | 
						|
*                to solve a system of equations.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IINFO, J, JB, NB
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMM, ZGETF2, ZLASWP, ZTRSM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGETRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment.
 | 
						|
*
 | 
						|
      NB = 64
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         CALL ZGETF2( M, N, A, LDA, IPIV, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         DO 20 J = 1, MIN( M, N ), NB
 | 
						|
            JB = MIN( MIN( M, N )-J+1, NB )
 | 
						|
*
 | 
						|
*           Factor diagonal and subdiagonal blocks and test for exact
 | 
						|
*           singularity.
 | 
						|
*
 | 
						|
            CALL ZGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
 | 
						|
*
 | 
						|
*           Adjust INFO and the pivot indices.
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 .AND. IINFO.GT.0 )
 | 
						|
     $         INFO = IINFO + J - 1
 | 
						|
            DO 10 I = J, MIN( M, J+JB-1 )
 | 
						|
               IPIV( I ) = J - 1 + IPIV( I )
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
*           Apply interchanges to columns 1:J-1.
 | 
						|
*
 | 
						|
            CALL ZLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
 | 
						|
*
 | 
						|
            IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*              Apply interchanges to columns J+JB:N.
 | 
						|
*
 | 
						|
               CALL ZLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
 | 
						|
     $                      IPIV, 1 )
 | 
						|
*
 | 
						|
*              Compute block row of U.
 | 
						|
*
 | 
						|
               CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
 | 
						|
     $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
 | 
						|
     $                     LDA )
 | 
						|
               IF( J+JB.LE.M ) THEN
 | 
						|
*
 | 
						|
*                 Update trailing submatrix.
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'No transpose', M-J-JB+1,
 | 
						|
     $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
 | 
						|
     $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
 | 
						|
     $                        LDA )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGETRF
 | 
						|
*
 | 
						|
      END
 |