481 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			481 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASY2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasy2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasy2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasy2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
 | |
| *                          LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            LTRANL, LTRANR
 | |
| *       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
 | |
| *       REAL               SCALE, XNORM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
 | |
| *>
 | |
| *>        op(TL)*X + ISGN*X*op(TR) = SCALE*B,
 | |
| *>
 | |
| *> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
 | |
| *> -1.  op(T) = T or T**T, where T**T denotes the transpose of T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] LTRANL
 | |
| *> \verbatim
 | |
| *>          LTRANL is LOGICAL
 | |
| *>          On entry, LTRANL specifies the op(TL):
 | |
| *>             = .FALSE., op(TL) = TL,
 | |
| *>             = .TRUE., op(TL) = TL**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LTRANR
 | |
| *> \verbatim
 | |
| *>          LTRANR is LOGICAL
 | |
| *>          On entry, LTRANR specifies the op(TR):
 | |
| *>            = .FALSE., op(TR) = TR,
 | |
| *>            = .TRUE., op(TR) = TR**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ISGN
 | |
| *> \verbatim
 | |
| *>          ISGN is INTEGER
 | |
| *>          On entry, ISGN specifies the sign of the equation
 | |
| *>          as described before. ISGN may only be 1 or -1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N1
 | |
| *> \verbatim
 | |
| *>          N1 is INTEGER
 | |
| *>          On entry, N1 specifies the order of matrix TL.
 | |
| *>          N1 may only be 0, 1 or 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N2
 | |
| *> \verbatim
 | |
| *>          N2 is INTEGER
 | |
| *>          On entry, N2 specifies the order of matrix TR.
 | |
| *>          N2 may only be 0, 1 or 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TL
 | |
| *> \verbatim
 | |
| *>          TL is REAL array, dimension (LDTL,2)
 | |
| *>          On entry, TL contains an N1 by N1 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDTL
 | |
| *> \verbatim
 | |
| *>          LDTL is INTEGER
 | |
| *>          The leading dimension of the matrix TL. LDTL >= max(1,N1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TR
 | |
| *> \verbatim
 | |
| *>          TR is REAL array, dimension (LDTR,2)
 | |
| *>          On entry, TR contains an N2 by N2 matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDTR
 | |
| *> \verbatim
 | |
| *>          LDTR is INTEGER
 | |
| *>          The leading dimension of the matrix TR. LDTR >= max(1,N2).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,2)
 | |
| *>          On entry, the N1 by N2 matrix B contains the right-hand
 | |
| *>          side of the equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the matrix B. LDB >= max(1,N1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is REAL
 | |
| *>          On exit, SCALE contains the scale factor. SCALE is chosen
 | |
| *>          less than or equal to 1 to prevent the solution overflowing.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension (LDX,2)
 | |
| *>          On exit, X contains the N1 by N2 solution.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the matrix X. LDX >= max(1,N1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XNORM
 | |
| *> \verbatim
 | |
| *>          XNORM is REAL
 | |
| *>          On exit, XNORM is the infinity-norm of the solution.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          On exit, INFO is set to
 | |
| *>             0: successful exit.
 | |
| *>             1: TL and TR have too close eigenvalues, so TL or
 | |
| *>                TR is perturbed to get a nonsingular equation.
 | |
| *>          NOTE: In the interests of speed, this routine does not
 | |
| *>                check the inputs for errors.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realSYauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
 | |
|      $                   LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            LTRANL, LTRANR
 | |
|       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
 | |
|       REAL               SCALE, XNORM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               TWO, HALF, EIGHT
 | |
|       PARAMETER          ( TWO = 2.0E+0, HALF = 0.5E+0, EIGHT = 8.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            BSWAP, XSWAP
 | |
|       INTEGER            I, IP, IPIV, IPSV, J, JP, JPSV, K
 | |
|       REAL               BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
 | |
|      $                   TEMP, U11, U12, U22, XMAX
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            BSWPIV( 4 ), XSWPIV( 4 )
 | |
|       INTEGER            JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
 | |
|      $                   LOCU22( 4 )
 | |
|       REAL               BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           ISAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
 | |
|      $                   LOCU22 / 4, 3, 2, 1 /
 | |
|       DATA               XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
 | |
|       DATA               BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Do not check the input parameters for errors
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N1.EQ.0 .OR. N2.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set constants to control overflow
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' ) / EPS
 | |
|       SGN = ISGN
 | |
| *
 | |
|       K = N1 + N1 + N2 - 2
 | |
|       GO TO ( 10, 20, 30, 50 )K
 | |
| *
 | |
| *     1 by 1: TL11*X + SGN*X*TR11 = B11
 | |
| *
 | |
|    10 CONTINUE
 | |
|       TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
 | |
|       BET = ABS( TAU1 )
 | |
|       IF( BET.LE.SMLNUM ) THEN
 | |
|          TAU1 = SMLNUM
 | |
|          BET = SMLNUM
 | |
|          INFO = 1
 | |
|       END IF
 | |
| *
 | |
|       SCALE = ONE
 | |
|       GAM = ABS( B( 1, 1 ) )
 | |
|       IF( SMLNUM*GAM.GT.BET )
 | |
|      $   SCALE = ONE / GAM
 | |
| *
 | |
|       X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
 | |
|       XNORM = ABS( X( 1, 1 ) )
 | |
|       RETURN
 | |
| *
 | |
| *     1 by 2:
 | |
| *     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12]
 | |
| *                                       [TR21 TR22]
 | |
| *
 | |
|    20 CONTINUE
 | |
| *
 | |
|       SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
 | |
|      $       ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
 | |
|      $       SMLNUM )
 | |
|       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
 | |
|       TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
 | |
|       IF( LTRANR ) THEN
 | |
|          TMP( 2 ) = SGN*TR( 2, 1 )
 | |
|          TMP( 3 ) = SGN*TR( 1, 2 )
 | |
|       ELSE
 | |
|          TMP( 2 ) = SGN*TR( 1, 2 )
 | |
|          TMP( 3 ) = SGN*TR( 2, 1 )
 | |
|       END IF
 | |
|       BTMP( 1 ) = B( 1, 1 )
 | |
|       BTMP( 2 ) = B( 1, 2 )
 | |
|       GO TO 40
 | |
| *
 | |
| *     2 by 1:
 | |
| *          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11]
 | |
| *            [TL21 TL22] [X21]         [X21]         [B21]
 | |
| *
 | |
|    30 CONTINUE
 | |
|       SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
 | |
|      $       ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
 | |
|      $       SMLNUM )
 | |
|       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
 | |
|       TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
 | |
|       IF( LTRANL ) THEN
 | |
|          TMP( 2 ) = TL( 1, 2 )
 | |
|          TMP( 3 ) = TL( 2, 1 )
 | |
|       ELSE
 | |
|          TMP( 2 ) = TL( 2, 1 )
 | |
|          TMP( 3 ) = TL( 1, 2 )
 | |
|       END IF
 | |
|       BTMP( 1 ) = B( 1, 1 )
 | |
|       BTMP( 2 ) = B( 2, 1 )
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Solve 2 by 2 system using complete pivoting.
 | |
| *     Set pivots less than SMIN to SMIN.
 | |
| *
 | |
|       IPIV = ISAMAX( 4, TMP, 1 )
 | |
|       U11 = TMP( IPIV )
 | |
|       IF( ABS( U11 ).LE.SMIN ) THEN
 | |
|          INFO = 1
 | |
|          U11 = SMIN
 | |
|       END IF
 | |
|       U12 = TMP( LOCU12( IPIV ) )
 | |
|       L21 = TMP( LOCL21( IPIV ) ) / U11
 | |
|       U22 = TMP( LOCU22( IPIV ) ) - U12*L21
 | |
|       XSWAP = XSWPIV( IPIV )
 | |
|       BSWAP = BSWPIV( IPIV )
 | |
|       IF( ABS( U22 ).LE.SMIN ) THEN
 | |
|          INFO = 1
 | |
|          U22 = SMIN
 | |
|       END IF
 | |
|       IF( BSWAP ) THEN
 | |
|          TEMP = BTMP( 2 )
 | |
|          BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
 | |
|          BTMP( 1 ) = TEMP
 | |
|       ELSE
 | |
|          BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
 | |
|       END IF
 | |
|       SCALE = ONE
 | |
|       IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
 | |
|      $    ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
 | |
|          SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
 | |
|          BTMP( 1 ) = BTMP( 1 )*SCALE
 | |
|          BTMP( 2 ) = BTMP( 2 )*SCALE
 | |
|       END IF
 | |
|       X2( 2 ) = BTMP( 2 ) / U22
 | |
|       X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
 | |
|       IF( XSWAP ) THEN
 | |
|          TEMP = X2( 2 )
 | |
|          X2( 2 ) = X2( 1 )
 | |
|          X2( 1 ) = TEMP
 | |
|       END IF
 | |
|       X( 1, 1 ) = X2( 1 )
 | |
|       IF( N1.EQ.1 ) THEN
 | |
|          X( 1, 2 ) = X2( 2 )
 | |
|          XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
 | |
|       ELSE
 | |
|          X( 2, 1 ) = X2( 2 )
 | |
|          XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     2 by 2:
 | |
| *     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
 | |
| *       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22]
 | |
| *
 | |
| *     Solve equivalent 4 by 4 system using complete pivoting.
 | |
| *     Set pivots less than SMIN to SMIN.
 | |
| *
 | |
|    50 CONTINUE
 | |
|       SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
 | |
|      $       ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
 | |
|       SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
 | |
|      $       ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
 | |
|       SMIN = MAX( EPS*SMIN, SMLNUM )
 | |
|       BTMP( 1 ) = ZERO
 | |
|       CALL SCOPY( 16, BTMP, 0, T16, 1 )
 | |
|       T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
 | |
|       T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
 | |
|       T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
 | |
|       T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
 | |
|       IF( LTRANL ) THEN
 | |
|          T16( 1, 2 ) = TL( 2, 1 )
 | |
|          T16( 2, 1 ) = TL( 1, 2 )
 | |
|          T16( 3, 4 ) = TL( 2, 1 )
 | |
|          T16( 4, 3 ) = TL( 1, 2 )
 | |
|       ELSE
 | |
|          T16( 1, 2 ) = TL( 1, 2 )
 | |
|          T16( 2, 1 ) = TL( 2, 1 )
 | |
|          T16( 3, 4 ) = TL( 1, 2 )
 | |
|          T16( 4, 3 ) = TL( 2, 1 )
 | |
|       END IF
 | |
|       IF( LTRANR ) THEN
 | |
|          T16( 1, 3 ) = SGN*TR( 1, 2 )
 | |
|          T16( 2, 4 ) = SGN*TR( 1, 2 )
 | |
|          T16( 3, 1 ) = SGN*TR( 2, 1 )
 | |
|          T16( 4, 2 ) = SGN*TR( 2, 1 )
 | |
|       ELSE
 | |
|          T16( 1, 3 ) = SGN*TR( 2, 1 )
 | |
|          T16( 2, 4 ) = SGN*TR( 2, 1 )
 | |
|          T16( 3, 1 ) = SGN*TR( 1, 2 )
 | |
|          T16( 4, 2 ) = SGN*TR( 1, 2 )
 | |
|       END IF
 | |
|       BTMP( 1 ) = B( 1, 1 )
 | |
|       BTMP( 2 ) = B( 2, 1 )
 | |
|       BTMP( 3 ) = B( 1, 2 )
 | |
|       BTMP( 4 ) = B( 2, 2 )
 | |
| *
 | |
| *     Perform elimination
 | |
| *
 | |
|       DO 100 I = 1, 3
 | |
|          XMAX = ZERO
 | |
|          DO 70 IP = I, 4
 | |
|             DO 60 JP = I, 4
 | |
|                IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
 | |
|                   XMAX = ABS( T16( IP, JP ) )
 | |
|                   IPSV = IP
 | |
|                   JPSV = JP
 | |
|                END IF
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|          IF( IPSV.NE.I ) THEN
 | |
|             CALL SSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
 | |
|             TEMP = BTMP( I )
 | |
|             BTMP( I ) = BTMP( IPSV )
 | |
|             BTMP( IPSV ) = TEMP
 | |
|          END IF
 | |
|          IF( JPSV.NE.I )
 | |
|      $      CALL SSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
 | |
|          JPIV( I ) = JPSV
 | |
|          IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
 | |
|             INFO = 1
 | |
|             T16( I, I ) = SMIN
 | |
|          END IF
 | |
|          DO 90 J = I + 1, 4
 | |
|             T16( J, I ) = T16( J, I ) / T16( I, I )
 | |
|             BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
 | |
|             DO 80 K = I + 1, 4
 | |
|                T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
 | |
|    80       CONTINUE
 | |
|    90    CONTINUE
 | |
|   100 CONTINUE
 | |
|       IF( ABS( T16( 4, 4 ) ).LT.SMIN )
 | |
|      $   T16( 4, 4 ) = SMIN
 | |
|       SCALE = ONE
 | |
|       IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
 | |
|      $    ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
 | |
|      $    ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
 | |
|      $    ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
 | |
|          SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
 | |
|      $           ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
 | |
|          BTMP( 1 ) = BTMP( 1 )*SCALE
 | |
|          BTMP( 2 ) = BTMP( 2 )*SCALE
 | |
|          BTMP( 3 ) = BTMP( 3 )*SCALE
 | |
|          BTMP( 4 ) = BTMP( 4 )*SCALE
 | |
|       END IF
 | |
|       DO 120 I = 1, 4
 | |
|          K = 5 - I
 | |
|          TEMP = ONE / T16( K, K )
 | |
|          TMP( K ) = BTMP( K )*TEMP
 | |
|          DO 110 J = K + 1, 4
 | |
|             TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
 | |
|   110    CONTINUE
 | |
|   120 CONTINUE
 | |
|       DO 130 I = 1, 3
 | |
|          IF( JPIV( 4-I ).NE.4-I ) THEN
 | |
|             TEMP = TMP( 4-I )
 | |
|             TMP( 4-I ) = TMP( JPIV( 4-I ) )
 | |
|             TMP( JPIV( 4-I ) ) = TEMP
 | |
|          END IF
 | |
|   130 CONTINUE
 | |
|       X( 1, 1 ) = TMP( 1 )
 | |
|       X( 2, 1 ) = TMP( 2 )
 | |
|       X( 1, 2 ) = TMP( 3 )
 | |
|       X( 2, 2 ) = TMP( 4 )
 | |
|       XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
 | |
|      $        ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASY2
 | |
| *
 | |
|       END
 |