525 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			525 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAED8 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed8.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed8.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed8.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
 | |
| *                          CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
 | |
| *                          GIVCOL, GIVNUM, INDXP, INDX, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
 | |
| *      $                   QSIZ
 | |
| *       REAL               RHO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
 | |
| *      $                   INDXQ( * ), PERM( * )
 | |
| *       REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ),
 | |
| *      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAED8 merges the two sets of eigenvalues together into a single
 | |
| *> sorted set.  Then it tries to deflate the size of the problem.
 | |
| *> There are two ways in which deflation can occur:  when two or more
 | |
| *> eigenvalues are close together or if there is a tiny element in the
 | |
| *> Z vector.  For each such occurrence the order of the related secular
 | |
| *> equation problem is reduced by one.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ICOMPQ
 | |
| *> \verbatim
 | |
| *>          ICOMPQ is INTEGER
 | |
| *>          = 0:  Compute eigenvalues only.
 | |
| *>          = 1:  Compute eigenvectors of original dense symmetric matrix
 | |
| *>                also.  On entry, Q contains the orthogonal matrix used
 | |
| *>                to reduce the original matrix to tridiagonal form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>         The number of non-deflated eigenvalues, and the order of the
 | |
| *>         related secular equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] QSIZ
 | |
| *> \verbatim
 | |
| *>          QSIZ is INTEGER
 | |
| *>         The dimension of the orthogonal matrix used to reduce
 | |
| *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>         On entry, the eigenvalues of the two submatrices to be
 | |
| *>         combined.  On exit, the trailing (N-K) updated eigenvalues
 | |
| *>         (those which were deflated) sorted into increasing order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>         If ICOMPQ = 0, Q is not referenced.  Otherwise,
 | |
| *>         on entry, Q contains the eigenvectors of the partially solved
 | |
| *>         system which has been previously updated in matrix
 | |
| *>         multiplies with other partially solved eigensystems.
 | |
| *>         On exit, Q contains the trailing (N-K) updated eigenvectors
 | |
| *>         (those which were deflated) in its last N-K columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>         The leading dimension of the array Q.  LDQ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INDXQ
 | |
| *> \verbatim
 | |
| *>          INDXQ is INTEGER array, dimension (N)
 | |
| *>         The permutation which separately sorts the two sub-problems
 | |
| *>         in D into ascending order.  Note that elements in the second
 | |
| *>         half of this permutation must first have CUTPNT added to
 | |
| *>         their values in order to be accurate.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is REAL
 | |
| *>         On entry, the off-diagonal element associated with the rank-1
 | |
| *>         cut which originally split the two submatrices which are now
 | |
| *>         being recombined.
 | |
| *>         On exit, RHO has been modified to the value required by
 | |
| *>         SLAED3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CUTPNT
 | |
| *> \verbatim
 | |
| *>          CUTPNT is INTEGER
 | |
| *>         The location of the last eigenvalue in the leading
 | |
| *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (N)
 | |
| *>         On entry, Z contains the updating vector (the last row of
 | |
| *>         the first sub-eigenvector matrix and the first row of the
 | |
| *>         second sub-eigenvector matrix).
 | |
| *>         On exit, the contents of Z are destroyed by the updating
 | |
| *>         process.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DLAMDA
 | |
| *> \verbatim
 | |
| *>          DLAMDA is REAL array, dimension (N)
 | |
| *>         A copy of the first K eigenvalues which will be used by
 | |
| *>         SLAED3 to form the secular equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q2
 | |
| *> \verbatim
 | |
| *>          Q2 is REAL array, dimension (LDQ2,N)
 | |
| *>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
 | |
| *>         a copy of the first K eigenvectors which will be used by
 | |
| *>         SLAED7 in a matrix multiply (SGEMM) to update the new
 | |
| *>         eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ2
 | |
| *> \verbatim
 | |
| *>          LDQ2 is INTEGER
 | |
| *>         The leading dimension of the array Q2.  LDQ2 >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>         The first k values of the final deflation-altered z-vector and
 | |
| *>         will be passed to SLAED3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PERM
 | |
| *> \verbatim
 | |
| *>          PERM is INTEGER array, dimension (N)
 | |
| *>         The permutations (from deflation and sorting) to be applied
 | |
| *>         to each eigenblock.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVPTR
 | |
| *> \verbatim
 | |
| *>          GIVPTR is INTEGER
 | |
| *>         The number of Givens rotations which took place in this
 | |
| *>         subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVCOL
 | |
| *> \verbatim
 | |
| *>          GIVCOL is INTEGER array, dimension (2, N)
 | |
| *>         Each pair of numbers indicates a pair of columns to take place
 | |
| *>         in a Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVNUM
 | |
| *> \verbatim
 | |
| *>          GIVNUM is REAL array, dimension (2, N)
 | |
| *>         Each number indicates the S value to be used in the
 | |
| *>         corresponding Givens rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDXP
 | |
| *> \verbatim
 | |
| *>          INDXP is INTEGER array, dimension (N)
 | |
| *>         The permutation used to place deflated values of D at the end
 | |
| *>         of the array.  INDXP(1:K) points to the nondeflated D-values
 | |
| *>         and INDXP(K+1:N) points to the deflated eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDX
 | |
| *> \verbatim
 | |
| *>          INDX is INTEGER array, dimension (N)
 | |
| *>         The permutation used to sort the contents of D into ascending
 | |
| *>         order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
 | |
|      $                   CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
 | |
|      $                   GIVCOL, GIVNUM, INDXP, INDX, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
 | |
|      $                   QSIZ
 | |
|       REAL               RHO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
 | |
|      $                   INDXQ( * ), PERM( * )
 | |
|       REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ),
 | |
|      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               MONE, ZERO, ONE, TWO, EIGHT
 | |
|       PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
 | |
|      $                   TWO = 2.0E0, EIGHT = 8.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
| *
 | |
|       INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
 | |
|       REAL               C, EPS, S, T, TAU, TOL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH, SLAPY2
 | |
|       EXTERNAL           ISAMAX, SLAMCH, SLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -14
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLAED8', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Need to initialize GIVPTR to O here in case of quick exit
 | |
| *     to prevent an unspecified code behavior (usually sigfault) 
 | |
| *     when IWORK array on entry to *stedc is not zeroed 
 | |
| *     (or at least some IWORK entries which used in *laed7 for GIVPTR).
 | |
| *
 | |
|       GIVPTR = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       N1 = CUTPNT
 | |
|       N2 = N - N1
 | |
|       N1P1 = N1 + 1
 | |
| *
 | |
|       IF( RHO.LT.ZERO ) THEN
 | |
|          CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Normalize z so that norm(z) = 1
 | |
| *
 | |
|       T = ONE / SQRT( TWO )
 | |
|       DO 10 J = 1, N
 | |
|          INDX( J ) = J
 | |
|    10 CONTINUE
 | |
|       CALL SSCAL( N, T, Z, 1 )
 | |
|       RHO = ABS( TWO*RHO )
 | |
| *
 | |
| *     Sort the eigenvalues into increasing order
 | |
| *
 | |
|       DO 20 I = CUTPNT + 1, N
 | |
|          INDXQ( I ) = INDXQ( I ) + CUTPNT
 | |
|    20 CONTINUE
 | |
|       DO 30 I = 1, N
 | |
|          DLAMDA( I ) = D( INDXQ( I ) )
 | |
|          W( I ) = Z( INDXQ( I ) )
 | |
|    30 CONTINUE
 | |
|       I = 1
 | |
|       J = CUTPNT + 1
 | |
|       CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
 | |
|       DO 40 I = 1, N
 | |
|          D( I ) = DLAMDA( INDX( I ) )
 | |
|          Z( I ) = W( INDX( I ) )
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Calculate the allowable deflation tolerence
 | |
| *
 | |
|       IMAX = ISAMAX( N, Z, 1 )
 | |
|       JMAX = ISAMAX( N, D, 1 )
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       TOL = EIGHT*EPS*ABS( D( JMAX ) )
 | |
| *
 | |
| *     If the rank-1 modifier is small enough, no more needs to be done
 | |
| *     except to reorganize Q so that its columns correspond with the
 | |
| *     elements in D.
 | |
| *
 | |
|       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
 | |
|          K = 0
 | |
|          IF( ICOMPQ.EQ.0 ) THEN
 | |
|             DO 50 J = 1, N
 | |
|                PERM( J ) = INDXQ( INDX( J ) )
 | |
|    50       CONTINUE
 | |
|          ELSE
 | |
|             DO 60 J = 1, N
 | |
|                PERM( J ) = INDXQ( INDX( J ) )
 | |
|                CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
 | |
|    60       CONTINUE
 | |
|             CALL SLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
 | |
|      $                   LDQ )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If there are multiple eigenvalues then the problem deflates.  Here
 | |
| *     the number of equal eigenvalues are found.  As each equal
 | |
| *     eigenvalue is found, an elementary reflector is computed to rotate
 | |
| *     the corresponding eigensubspace so that the corresponding
 | |
| *     components of Z are zero in this new basis.
 | |
| *
 | |
|       K = 0
 | |
|       K2 = N + 1
 | |
|       DO 70 J = 1, N
 | |
|          IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflate due to small z component.
 | |
| *
 | |
|             K2 = K2 - 1
 | |
|             INDXP( K2 ) = J
 | |
|             IF( J.EQ.N )
 | |
|      $         GO TO 110
 | |
|          ELSE
 | |
|             JLAM = J
 | |
|             GO TO 80
 | |
|          END IF
 | |
|    70 CONTINUE
 | |
|    80 CONTINUE
 | |
|       J = J + 1
 | |
|       IF( J.GT.N )
 | |
|      $   GO TO 100
 | |
|       IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
 | |
| *
 | |
| *        Deflate due to small z component.
 | |
| *
 | |
|          K2 = K2 - 1
 | |
|          INDXP( K2 ) = J
 | |
|       ELSE
 | |
| *
 | |
| *        Check if eigenvalues are close enough to allow deflation.
 | |
| *
 | |
|          S = Z( JLAM )
 | |
|          C = Z( J )
 | |
| *
 | |
| *        Find sqrt(a**2+b**2) without overflow or
 | |
| *        destructive underflow.
 | |
| *
 | |
|          TAU = SLAPY2( C, S )
 | |
|          T = D( J ) - D( JLAM )
 | |
|          C = C / TAU
 | |
|          S = -S / TAU
 | |
|          IF( ABS( T*C*S ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflation is possible.
 | |
| *
 | |
|             Z( J ) = TAU
 | |
|             Z( JLAM ) = ZERO
 | |
| *
 | |
| *           Record the appropriate Givens rotation
 | |
| *
 | |
|             GIVPTR = GIVPTR + 1
 | |
|             GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
 | |
|             GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
 | |
|             GIVNUM( 1, GIVPTR ) = C
 | |
|             GIVNUM( 2, GIVPTR ) = S
 | |
|             IF( ICOMPQ.EQ.1 ) THEN
 | |
|                CALL SROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
 | |
|      $                    Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
 | |
|             END IF
 | |
|             T = D( JLAM )*C*C + D( J )*S*S
 | |
|             D( J ) = D( JLAM )*S*S + D( J )*C*C
 | |
|             D( JLAM ) = T
 | |
|             K2 = K2 - 1
 | |
|             I = 1
 | |
|    90       CONTINUE
 | |
|             IF( K2+I.LE.N ) THEN
 | |
|                IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
 | |
|                   INDXP( K2+I-1 ) = INDXP( K2+I )
 | |
|                   INDXP( K2+I ) = JLAM
 | |
|                   I = I + 1
 | |
|                   GO TO 90
 | |
|                ELSE
 | |
|                   INDXP( K2+I-1 ) = JLAM
 | |
|                END IF
 | |
|             ELSE
 | |
|                INDXP( K2+I-1 ) = JLAM
 | |
|             END IF
 | |
|             JLAM = J
 | |
|          ELSE
 | |
|             K = K + 1
 | |
|             W( K ) = Z( JLAM )
 | |
|             DLAMDA( K ) = D( JLAM )
 | |
|             INDXP( K ) = JLAM
 | |
|             JLAM = J
 | |
|          END IF
 | |
|       END IF
 | |
|       GO TO 80
 | |
|   100 CONTINUE
 | |
| *
 | |
| *     Record the last eigenvalue.
 | |
| *
 | |
|       K = K + 1
 | |
|       W( K ) = Z( JLAM )
 | |
|       DLAMDA( K ) = D( JLAM )
 | |
|       INDXP( K ) = JLAM
 | |
| *
 | |
|   110 CONTINUE
 | |
| *
 | |
| *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
 | |
| *     and Q2 respectively.  The eigenvalues/vectors which were not
 | |
| *     deflated go into the first K slots of DLAMDA and Q2 respectively,
 | |
| *     while those which were deflated go into the last N - K slots.
 | |
| *
 | |
|       IF( ICOMPQ.EQ.0 ) THEN
 | |
|          DO 120 J = 1, N
 | |
|             JP = INDXP( J )
 | |
|             DLAMDA( J ) = D( JP )
 | |
|             PERM( J ) = INDXQ( INDX( JP ) )
 | |
|   120    CONTINUE
 | |
|       ELSE
 | |
|          DO 130 J = 1, N
 | |
|             JP = INDXP( J )
 | |
|             DLAMDA( J ) = D( JP )
 | |
|             PERM( J ) = INDXQ( INDX( JP ) )
 | |
|             CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
 | |
|   130    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     The deflated eigenvalues and their corresponding vectors go back
 | |
| *     into the last N - K slots of D and Q respectively.
 | |
| *
 | |
|       IF( K.LT.N ) THEN
 | |
|          IF( ICOMPQ.EQ.0 ) THEN
 | |
|             CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
 | |
|          ELSE
 | |
|             CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
 | |
|             CALL SLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
 | |
|      $                   Q( 1, K+1 ), LDQ )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAED8
 | |
| *
 | |
|       END
 |