276 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STPT03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
 | |
| *                          TSCAL, X, LDX, B, LDB, WORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            LDB, LDX, N, NRHS
 | |
| *       REAL               RESID, SCALE, TSCAL
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AP( * ), B( LDB, * ), CNORM( * ), WORK( * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STPT03 computes the residual for the solution to a scaled triangular
 | |
| *> system of equations A*x = s*b  or  A'*x = s*b  when the triangular
 | |
| *> matrix A is stored in packed format.  Here A' is the transpose of A,
 | |
| *> s is a scalar, and x and b are N by NRHS matrices.  The test ratio is
 | |
| *> the maximum over the number of right hand sides of
 | |
| *>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 | |
| *> where op(A) denotes A or A' and EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the operation applied to A.
 | |
| *>          = 'N':  A *x = s*b  (No transpose)
 | |
| *>          = 'T':  A'*x = s*b  (Transpose)
 | |
| *>          = 'C':  A'*x = s*b  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices X and B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          The upper or lower triangular matrix A, packed columnwise in
 | |
| *>          a linear array.  The j-th column of A is stored in the array
 | |
| *>          AP as follows:
 | |
| *>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L',
 | |
| *>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is REAL
 | |
| *>          The scaling factor s used in solving the triangular system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CNORM
 | |
| *> \verbatim
 | |
| *>          CNORM is REAL array, dimension (N)
 | |
| *>          The 1-norms of the columns of A, not counting the diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSCAL
 | |
| *> \verbatim
 | |
| *>          TSCAL is REAL
 | |
| *>          The scaling factor used in computing the 1-norms in CNORM.
 | |
| *>          CNORM actually contains the column norms of TSCAL*A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          The right hand side vectors for the system of linear
 | |
| *>          equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          The maximum over the number of right hand sides of
 | |
| *>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
 | |
|      $                   TSCAL, X, LDX, B, LDB, WORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            LDB, LDX, N, NRHS
 | |
|       REAL               RESID, SCALE, TSCAL
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AP( * ), B( LDB, * ), CNORM( * ), WORK( * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            IX, J, JJ
 | |
|       REAL               BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ISAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SLABAD, SSCAL, STPMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       SMLNUM = SLAMCH( 'Safe minimum' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Compute the norm of the triangular matrix A using the column
 | |
| *     norms already computed by SLATPS.
 | |
| *
 | |
|       TNORM = ZERO
 | |
|       IF( LSAME( DIAG, 'N' ) ) THEN
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             JJ = 1
 | |
|             DO 10 J = 1, N
 | |
|                TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
 | |
|                JJ = JJ + J + 1
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             JJ = 1
 | |
|             DO 20 J = 1, N
 | |
|                TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
 | |
|                JJ = JJ + N - J + 1
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
|          DO 30 J = 1, N
 | |
|             TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
 | |
|    30    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Compute the maximum over the number of right hand sides of
 | |
| *        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | |
| *
 | |
|       RESID = ZERO
 | |
|       DO 40 J = 1, NRHS
 | |
|          CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
 | |
|          IX = ISAMAX( N, WORK, 1 )
 | |
|          XNORM = MAX( ONE, ABS( X( IX, J ) ) )
 | |
|          XSCAL = ( ONE / XNORM ) / REAL( N )
 | |
|          CALL SSCAL( N, XSCAL, WORK, 1 )
 | |
|          CALL STPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
 | |
|          CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
 | |
|          IX = ISAMAX( N, WORK, 1 )
 | |
|          ERR = TSCAL*ABS( WORK( IX ) )
 | |
|          IX = ISAMAX( N, X( 1, J ), 1 )
 | |
|          XNORM = ABS( X( IX, J ) )
 | |
|          IF( ERR*SMLNUM.LE.XNORM ) THEN
 | |
|             IF( XNORM.GT.ZERO )
 | |
|      $         ERR = ERR / XNORM
 | |
|          ELSE
 | |
|             IF( ERR.GT.ZERO )
 | |
|      $         ERR = ONE / EPS
 | |
|          END IF
 | |
|          IF( ERR*SMLNUM.LE.TNORM ) THEN
 | |
|             IF( TNORM.GT.ZERO )
 | |
|      $         ERR = ERR / TNORM
 | |
|          ELSE
 | |
|             IF( ERR.GT.ZERO )
 | |
|      $         ERR = ONE / EPS
 | |
|          END IF
 | |
|          RESID = MAX( RESID, ERR )
 | |
|    40 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STPT03
 | |
| *
 | |
|       END
 |