211 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLA_PORPVGRW + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, 
 | |
| *                                               LDAF, WORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER*1        UPLO
 | |
| *       INTEGER            NCOLS, LDA, LDAF
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> 
 | |
| *> DLA_PORPVGRW computes the reciprocal pivot growth factor
 | |
| *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | |
| *> much less than 1, the stability of the LU factorization of the
 | |
| *> (equilibrated) matrix A could be poor. This also means that the
 | |
| *> solution X, estimated condition numbers, and error bounds could be
 | |
| *> unreliable.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>       = 'U':  Upper triangle of A is stored;
 | |
| *>       = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCOLS
 | |
| *> \verbatim
 | |
| *>          NCOLS is INTEGER
 | |
| *>     The number of columns of the matrix A. NCOLS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>     On entry, the N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
 | |
| *>     The triangular factor U or L from the Cholesky factorization
 | |
| *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doublePOcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, 
 | |
|      $                                        LDAF, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        UPLO
 | |
|       INTEGER            NCOLS, LDA, LDAF
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
 | |
|       LOGICAL            UPPER
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       EXTERNAL           LSAME, DLASET
 | |
|       LOGICAL            LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       UPPER = LSAME( 'Upper', UPLO )
 | |
| *
 | |
| *     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
 | |
| *     we restrict the growth search to that minor and use only the first
 | |
| *     2*NCOLS workspace entries.
 | |
| *
 | |
|       RPVGRW = 1.0D+0
 | |
|       DO I = 1, 2*NCOLS
 | |
|          WORK( I ) = 0.0D+0
 | |
|       END DO
 | |
| *
 | |
| *     Find the max magnitude entry of each column.
 | |
| *
 | |
|       IF ( UPPER ) THEN
 | |
|          DO J = 1, NCOLS
 | |
|             DO I = 1, J
 | |
|                WORK( NCOLS+J ) =
 | |
|      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO J = 1, NCOLS
 | |
|             DO I = J, NCOLS
 | |
|                WORK( NCOLS+J ) =
 | |
|      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Now find the max magnitude entry of each column of the factor in
 | |
| *     AF.  No pivoting, so no permutations.
 | |
| *
 | |
|       IF ( LSAME( 'Upper', UPLO ) ) THEN
 | |
|          DO J = 1, NCOLS
 | |
|             DO I = 1, J
 | |
|                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO J = 1, NCOLS
 | |
|             DO I = J, NCOLS
 | |
|                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Compute the *inverse* of the max element growth factor.  Dividing
 | |
| *     by zero would imply the largest entry of the factor's column is
 | |
| *     zero.  Than can happen when either the column of A is zero or
 | |
| *     massive pivots made the factor underflow to zero.  Neither counts
 | |
| *     as growth in itself, so simply ignore terms with zero
 | |
| *     denominators.
 | |
| *
 | |
|       IF ( LSAME( 'Upper', UPLO ) ) THEN
 | |
|          DO I = 1, NCOLS
 | |
|             UMAX = WORK( I )
 | |
|             AMAX = WORK( NCOLS+I )
 | |
|             IF ( UMAX /= 0.0D+0 ) THEN
 | |
|                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | |
|             END IF
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO I = 1, NCOLS
 | |
|             UMAX = WORK( I )
 | |
|             AMAX = WORK( NCOLS+I )
 | |
|             IF ( UMAX /= 0.0D+0 ) THEN
 | |
|                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
| 
 | |
|       DLA_PORPVGRW = RPVGRW
 | |
|       END
 |