416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			416 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTRMM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION ALPHA
 | |
| *       INTEGER LDA,LDB,M,N
 | |
| *       CHARACTER DIAG,SIDE,TRANSA,UPLO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION A(LDA,*),B(LDB,*)
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTRMM  performs one of the matrix-matrix operations
 | |
| *>
 | |
| *>    B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
 | |
| *>
 | |
| *> where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
 | |
| *> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
 | |
| *>
 | |
| *>    op( A ) = A   or   op( A ) = A**T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>           On entry,  SIDE specifies whether  op( A ) multiplies B from
 | |
| *>           the left or right as follows:
 | |
| *>
 | |
| *>              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
 | |
| *>
 | |
| *>              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the matrix A is an upper or
 | |
| *>           lower triangular matrix as follows:
 | |
| *>
 | |
| *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *>
 | |
| *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSA
 | |
| *> \verbatim
 | |
| *>          TRANSA is CHARACTER*1
 | |
| *>           On entry, TRANSA specifies the form of op( A ) to be used in
 | |
| *>           the matrix multiplication as follows:
 | |
| *>
 | |
| *>              TRANSA = 'N' or 'n'   op( A ) = A.
 | |
| *>
 | |
| *>              TRANSA = 'T' or 't'   op( A ) = A**T.
 | |
| *>
 | |
| *>              TRANSA = 'C' or 'c'   op( A ) = A**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>           On entry, DIAG specifies whether or not A is unit triangular
 | |
| *>           as follows:
 | |
| *>
 | |
| *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *>
 | |
| *>              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *>                                  triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           On entry, M specifies the number of rows of B. M must be at
 | |
| *>           least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           On entry, N specifies the number of columns of B.  N must be
 | |
| *>           at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION.
 | |
| *>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
 | |
| *>           zero then  A is not referenced and  B need not be set before
 | |
| *>           entry.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>           A is DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
 | |
| *>           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
 | |
| *>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
 | |
| *>           upper triangular part of the array  A must contain the upper
 | |
| *>           triangular matrix  and the strictly lower triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
 | |
| *>           lower triangular part of the array  A must contain the lower
 | |
| *>           triangular matrix  and the strictly upper triangular part of
 | |
| *>           A is not referenced.
 | |
| *>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
 | |
| *>           A  are not referenced either,  but are assumed to be  unity.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>           On entry, LDA specifies the first dimension of A as declared
 | |
| *>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | |
| *>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
 | |
| *>           then LDA must be at least max( 1, n ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
 | |
| *>           Before entry,  the leading  m by n part of the array  B must
 | |
| *>           contain the matrix  B,  and  on exit  is overwritten  by the
 | |
| *>           transformed matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>           On entry, LDB specifies the first dimension of B as declared
 | |
| *>           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | |
| *>           max( 1, m ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_blas_level3
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Level 3 Blas routine.
 | |
| *>
 | |
| *>  -- Written on 8-February-1989.
 | |
| *>     Jack Dongarra, Argonne National Laboratory.
 | |
| *>     Iain Duff, AERE Harwell.
 | |
| *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *>     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
 | |
| *
 | |
| *  -- Reference BLAS level3 routine (version 3.4.0) --
 | |
| *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION ALPHA
 | |
|       INTEGER LDA,LDB,M,N
 | |
|       CHARACTER DIAG,SIDE,TRANSA,UPLO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION A(LDA,*),B(LDB,*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION TEMP
 | |
|       INTEGER I,INFO,J,K,NROWA
 | |
|       LOGICAL LSIDE,NOUNIT,UPPER
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION ONE,ZERO
 | |
|       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
 | |
| *     ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       LSIDE = LSAME(SIDE,'L')
 | |
|       IF (LSIDE) THEN
 | |
|           NROWA = M
 | |
|       ELSE
 | |
|           NROWA = N
 | |
|       END IF
 | |
|       NOUNIT = LSAME(DIAG,'N')
 | |
|       UPPER = LSAME(UPLO,'U')
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
 | |
|      +         (.NOT.LSAME(TRANSA,'T')) .AND.
 | |
|      +         (.NOT.LSAME(TRANSA,'C'))) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 6
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 9
 | |
|       ELSE IF (LDB.LT.MAX(1,M)) THEN
 | |
|           INFO = 11
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('DTRMM ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF (M.EQ.0 .OR. N.EQ.0) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           DO 20 J = 1,N
 | |
|               DO 10 I = 1,M
 | |
|                   B(I,J) = ZERO
 | |
|    10         CONTINUE
 | |
|    20     CONTINUE
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (LSIDE) THEN
 | |
|           IF (LSAME(TRANSA,'N')) THEN
 | |
| *
 | |
| *           Form  B := alpha*A*B.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 50 J = 1,N
 | |
|                       DO 40 K = 1,M
 | |
|                           IF (B(K,J).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*B(K,J)
 | |
|                               DO 30 I = 1,K - 1
 | |
|                                   B(I,J) = B(I,J) + TEMP*A(I,K)
 | |
|    30                         CONTINUE
 | |
|                               IF (NOUNIT) TEMP = TEMP*A(K,K)
 | |
|                               B(K,J) = TEMP
 | |
|                           END IF
 | |
|    40                 CONTINUE
 | |
|    50             CONTINUE
 | |
|               ELSE
 | |
|                   DO 80 J = 1,N
 | |
|                       DO 70 K = M,1,-1
 | |
|                           IF (B(K,J).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*B(K,J)
 | |
|                               B(K,J) = TEMP
 | |
|                               IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
 | |
|                               DO 60 I = K + 1,M
 | |
|                                   B(I,J) = B(I,J) + TEMP*A(I,K)
 | |
|    60                         CONTINUE
 | |
|                           END IF
 | |
|    70                 CONTINUE
 | |
|    80             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
| *
 | |
| *           Form  B := alpha*A**T*B.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 110 J = 1,N
 | |
|                       DO 100 I = M,1,-1
 | |
|                           TEMP = B(I,J)
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(I,I)
 | |
|                           DO 90 K = 1,I - 1
 | |
|                               TEMP = TEMP + A(K,I)*B(K,J)
 | |
|    90                     CONTINUE
 | |
|                           B(I,J) = ALPHA*TEMP
 | |
|   100                 CONTINUE
 | |
|   110             CONTINUE
 | |
|               ELSE
 | |
|                   DO 140 J = 1,N
 | |
|                       DO 130 I = 1,M
 | |
|                           TEMP = B(I,J)
 | |
|                           IF (NOUNIT) TEMP = TEMP*A(I,I)
 | |
|                           DO 120 K = I + 1,M
 | |
|                               TEMP = TEMP + A(K,I)*B(K,J)
 | |
|   120                     CONTINUE
 | |
|                           B(I,J) = ALPHA*TEMP
 | |
|   130                 CONTINUE
 | |
|   140             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       ELSE
 | |
|           IF (LSAME(TRANSA,'N')) THEN
 | |
| *
 | |
| *           Form  B := alpha*B*A.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 180 J = N,1,-1
 | |
|                       TEMP = ALPHA
 | |
|                       IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                       DO 150 I = 1,M
 | |
|                           B(I,J) = TEMP*B(I,J)
 | |
|   150                 CONTINUE
 | |
|                       DO 170 K = 1,J - 1
 | |
|                           IF (A(K,J).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*A(K,J)
 | |
|                               DO 160 I = 1,M
 | |
|                                   B(I,J) = B(I,J) + TEMP*B(I,K)
 | |
|   160                         CONTINUE
 | |
|                           END IF
 | |
|   170                 CONTINUE
 | |
|   180             CONTINUE
 | |
|               ELSE
 | |
|                   DO 220 J = 1,N
 | |
|                       TEMP = ALPHA
 | |
|                       IF (NOUNIT) TEMP = TEMP*A(J,J)
 | |
|                       DO 190 I = 1,M
 | |
|                           B(I,J) = TEMP*B(I,J)
 | |
|   190                 CONTINUE
 | |
|                       DO 210 K = J + 1,N
 | |
|                           IF (A(K,J).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*A(K,J)
 | |
|                               DO 200 I = 1,M
 | |
|                                   B(I,J) = B(I,J) + TEMP*B(I,K)
 | |
|   200                         CONTINUE
 | |
|                           END IF
 | |
|   210                 CONTINUE
 | |
|   220             CONTINUE
 | |
|               END IF
 | |
|           ELSE
 | |
| *
 | |
| *           Form  B := alpha*B*A**T.
 | |
| *
 | |
|               IF (UPPER) THEN
 | |
|                   DO 260 K = 1,N
 | |
|                       DO 240 J = 1,K - 1
 | |
|                           IF (A(J,K).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*A(J,K)
 | |
|                               DO 230 I = 1,M
 | |
|                                   B(I,J) = B(I,J) + TEMP*B(I,K)
 | |
|   230                         CONTINUE
 | |
|                           END IF
 | |
|   240                 CONTINUE
 | |
|                       TEMP = ALPHA
 | |
|                       IF (NOUNIT) TEMP = TEMP*A(K,K)
 | |
|                       IF (TEMP.NE.ONE) THEN
 | |
|                           DO 250 I = 1,M
 | |
|                               B(I,K) = TEMP*B(I,K)
 | |
|   250                     CONTINUE
 | |
|                       END IF
 | |
|   260             CONTINUE
 | |
|               ELSE
 | |
|                   DO 300 K = N,1,-1
 | |
|                       DO 280 J = K + 1,N
 | |
|                           IF (A(J,K).NE.ZERO) THEN
 | |
|                               TEMP = ALPHA*A(J,K)
 | |
|                               DO 270 I = 1,M
 | |
|                                   B(I,J) = B(I,J) + TEMP*B(I,K)
 | |
|   270                         CONTINUE
 | |
|                           END IF
 | |
|   280                 CONTINUE
 | |
|                       TEMP = ALPHA
 | |
|                       IF (NOUNIT) TEMP = TEMP*A(K,K)
 | |
|                       IF (TEMP.NE.ONE) THEN
 | |
|                           DO 290 I = 1,M
 | |
|                               B(I,K) = TEMP*B(I,K)
 | |
|   290                     CONTINUE
 | |
|                       END IF
 | |
|   300             CONTINUE
 | |
|               END IF
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTRMM .
 | |
| *
 | |
|       END
 |