353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGEBRD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGEBRD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebrd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebrd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebrd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGEBRD reduces a general complex M-by-N matrix A to upper or lower
 | 
						|
*> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
 | 
						|
*>
 | 
						|
*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows in the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns in the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N general matrix to be reduced.
 | 
						|
*>          On exit,
 | 
						|
*>          if m >= n, the diagonal and the first superdiagonal are
 | 
						|
*>            overwritten with the upper bidiagonal matrix B; the
 | 
						|
*>            elements below the diagonal, with the array TAUQ, represent
 | 
						|
*>            the unitary matrix Q as a product of elementary
 | 
						|
*>            reflectors, and the elements above the first superdiagonal,
 | 
						|
*>            with the array TAUP, represent the unitary matrix P as
 | 
						|
*>            a product of elementary reflectors;
 | 
						|
*>          if m < n, the diagonal and the first subdiagonal are
 | 
						|
*>            overwritten with the lower bidiagonal matrix B; the
 | 
						|
*>            elements below the first subdiagonal, with the array TAUQ,
 | 
						|
*>            represent the unitary matrix Q as a product of
 | 
						|
*>            elementary reflectors, and the elements above the diagonal,
 | 
						|
*>            with the array TAUP, represent the unitary matrix P as
 | 
						|
*>            a product of elementary reflectors.
 | 
						|
*>          See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (min(M,N))
 | 
						|
*>          The diagonal elements of the bidiagonal matrix B:
 | 
						|
*>          D(i) = A(i,i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
 | 
						|
*>          The off-diagonal elements of the bidiagonal matrix B:
 | 
						|
*>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
 | 
						|
*>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUQ
 | 
						|
*> \verbatim
 | 
						|
*>          TAUQ is COMPLEX*16 array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors which
 | 
						|
*>          represent the unitary matrix Q. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUP
 | 
						|
*> \verbatim
 | 
						|
*>          TAUP is COMPLEX*16 array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors which
 | 
						|
*>          represent the unitary matrix P. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= max(1,M,N).
 | 
						|
*>          For optimum performance LWORK >= (M+N)*NB, where NB
 | 
						|
*>          is the optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date November 2017
 | 
						|
*
 | 
						|
*> \ingroup complex16GEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrices Q and P are represented as products of elementary
 | 
						|
*>  reflectors:
 | 
						|
*>
 | 
						|
*>  If m >= n,
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
 | 
						|
*>
 | 
						|
*>  Each H(i) and G(i) has the form:
 | 
						|
*>
 | 
						|
*>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
 | 
						|
*>
 | 
						|
*>  where tauq and taup are complex scalars, and v and u are complex
 | 
						|
*>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
 | 
						|
*>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
 | 
						|
*>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 | 
						|
*>
 | 
						|
*>  If m < n,
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
 | 
						|
*>
 | 
						|
*>  Each H(i) and G(i) has the form:
 | 
						|
*>
 | 
						|
*>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
 | 
						|
*>
 | 
						|
*>  where tauq and taup are complex scalars, and v and u are complex
 | 
						|
*>  vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
 | 
						|
*>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
 | 
						|
*>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 | 
						|
*>
 | 
						|
*>  The contents of A on exit are illustrated by the following examples:
 | 
						|
*>
 | 
						|
*>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
 | 
						|
*>
 | 
						|
*>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
 | 
						|
*>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
 | 
						|
*>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
 | 
						|
*>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
 | 
						|
*>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
 | 
						|
*>    (  v1  v2  v3  v4  v5 )
 | 
						|
*>
 | 
						|
*>  where d and e denote diagonal and off-diagonal elements of B, vi
 | 
						|
*>  denotes an element of the vector defining H(i), and ui an element of
 | 
						|
*>  the vector defining G(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.8.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
 | 
						|
     $                   NBMIN, NX, WS
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEBD2, ZGEMM, ZLABRD
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) )
 | 
						|
      LWKOPT = ( M+N )*NB
 | 
						|
      WORK( 1 ) = DBLE( LWKOPT )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.LT.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGEBRD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      MINMN = MIN( M, N )
 | 
						|
      IF( MINMN.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WS = MAX( M, N )
 | 
						|
      LDWRKX = M
 | 
						|
      LDWRKY = N
 | 
						|
*
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
 | 
						|
*
 | 
						|
*        Set the crossover point NX.
 | 
						|
*
 | 
						|
         NX = MAX( NB, ILAENV( 3, 'ZGEBRD', ' ', M, N, -1, -1 ) )
 | 
						|
*
 | 
						|
*        Determine when to switch from blocked to unblocked code.
 | 
						|
*
 | 
						|
         IF( NX.LT.MINMN ) THEN
 | 
						|
            WS = ( M+N )*NB
 | 
						|
            IF( LWORK.LT.WS ) THEN
 | 
						|
*
 | 
						|
*              Not enough work space for the optimal NB, consider using
 | 
						|
*              a smaller block size.
 | 
						|
*
 | 
						|
               NBMIN = ILAENV( 2, 'ZGEBRD', ' ', M, N, -1, -1 )
 | 
						|
               IF( LWORK.GE.( M+N )*NBMIN ) THEN
 | 
						|
                  NB = LWORK / ( M+N )
 | 
						|
               ELSE
 | 
						|
                  NB = 1
 | 
						|
                  NX = MINMN
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         NX = MINMN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 30 I = 1, MINMN - NX, NB
 | 
						|
*
 | 
						|
*        Reduce rows and columns i:i+ib-1 to bidiagonal form and return
 | 
						|
*        the matrices X and Y which are needed to update the unreduced
 | 
						|
*        part of the matrix
 | 
						|
*
 | 
						|
         CALL ZLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
 | 
						|
     $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
 | 
						|
     $                WORK( LDWRKX*NB+1 ), LDWRKY )
 | 
						|
*
 | 
						|
*        Update the trailing submatrix A(i+ib:m,i+ib:n), using
 | 
						|
*        an update of the form  A := A - V*Y**H - X*U**H
 | 
						|
*
 | 
						|
         CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1,
 | 
						|
     $               N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA,
 | 
						|
     $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
 | 
						|
     $               A( I+NB, I+NB ), LDA )
 | 
						|
         CALL ZGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
 | 
						|
     $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
 | 
						|
     $               ONE, A( I+NB, I+NB ), LDA )
 | 
						|
*
 | 
						|
*        Copy diagonal and off-diagonal elements of B back into A
 | 
						|
*
 | 
						|
         IF( M.GE.N ) THEN
 | 
						|
            DO 10 J = I, I + NB - 1
 | 
						|
               A( J, J ) = D( J )
 | 
						|
               A( J, J+1 ) = E( J )
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 20 J = I, I + NB - 1
 | 
						|
               A( J, J ) = D( J )
 | 
						|
               A( J+1, J ) = E( J )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Use unblocked code to reduce the remainder of the matrix
 | 
						|
*
 | 
						|
      CALL ZGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
 | 
						|
     $             TAUQ( I ), TAUP( I ), WORK, IINFO )
 | 
						|
      WORK( 1 ) = WS
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGEBRD
 | 
						|
*
 | 
						|
      END
 |