483 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			483 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSTEDC
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSTEDC + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstedc.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstedc.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstedc.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | 
						|
*                          LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPZ
 | 
						|
*       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSTEDC computes all eigenvalues and, optionally, eigenvectors of a
 | 
						|
*> symmetric tridiagonal matrix using the divide and conquer method.
 | 
						|
*> The eigenvectors of a full or band real symmetric matrix can also be
 | 
						|
*> found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this
 | 
						|
*> matrix to tridiagonal form.
 | 
						|
*>
 | 
						|
*> This code makes very mild assumptions about floating point
 | 
						|
*> arithmetic. It will work on machines with a guard digit in
 | 
						|
*> add/subtract, or on those binary machines without guard digits
 | 
						|
*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
 | 
						|
*> It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.  See SLAED3 for details.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only.
 | 
						|
*>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
 | 
						|
*>          = 'V':  Compute eigenvectors of original dense symmetric
 | 
						|
*>                  matrix also.  On entry, Z contains the orthogonal
 | 
						|
*>                  matrix used to reduce the original matrix to
 | 
						|
*>                  tridiagonal form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          On entry, the diagonal elements of the tridiagonal matrix.
 | 
						|
*>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          On entry, the subdiagonal elements of the tridiagonal matrix.
 | 
						|
*>          On exit, E has been destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ,N)
 | 
						|
*>          On entry, if COMPZ = 'V', then Z contains the orthogonal
 | 
						|
*>          matrix used in the reduction to tridiagonal form.
 | 
						|
*>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
 | 
						|
*>          orthonormal eigenvectors of the original symmetric matrix,
 | 
						|
*>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 | 
						|
*>          of the symmetric tridiagonal matrix.
 | 
						|
*>          If  COMPZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1.
 | 
						|
*>          If eigenvectors are desired, then LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
 | 
						|
*>          If COMPZ = 'V' and N > 1 then LWORK must be at least
 | 
						|
*>                         ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
 | 
						|
*>                         where lg( N ) = smallest integer k such
 | 
						|
*>                         that 2**k >= N.
 | 
						|
*>          If COMPZ = 'I' and N > 1 then LWORK must be at least
 | 
						|
*>                         ( 1 + 4*N + N**2 ).
 | 
						|
*>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | 
						|
*>          equal to the minimum divide size, usually 25, then LWORK need
 | 
						|
*>          only be max(1,2*(N-1)).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.
 | 
						|
*>          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
 | 
						|
*>          If COMPZ = 'V' and N > 1 then LIWORK must be at least
 | 
						|
*>                         ( 6 + 6*N + 5*N*lg N ).
 | 
						|
*>          If COMPZ = 'I' and N > 1 then LIWORK must be at least
 | 
						|
*>                         ( 3 + 5*N ).
 | 
						|
*>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | 
						|
*>          equal to the minimum divide size, usually 25, then LIWORK
 | 
						|
*>          need only be 1.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal size of the IWORK array,
 | 
						|
*>          returns this value as the first entry of the IWORK array, and
 | 
						|
*>          no error message related to LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  The algorithm failed to compute an eigenvalue while
 | 
						|
*>                working on the submatrix lying in rows and columns
 | 
						|
*>                INFO/(N+1) through mod(INFO,N+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA \n
 | 
						|
*>  Modified by Francoise Tisseur, University of Tennessee
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | 
						|
     $                   LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPZ
 | 
						|
      INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
 | 
						|
     $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
 | 
						|
      REAL               EPS, ORGNRM, P, TINY
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SLAMCH, SLANST
 | 
						|
      EXTERNAL           ILAENV, LSAME, SLAMCH, SLANST
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SLACPY, SLAED0, SLASCL, SLASET, SLASRT,
 | 
						|
     $                   SSTEQR, SSTERF, SSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, MAX, MOD, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( LSAME( COMPZ, 'N' ) ) THEN
 | 
						|
         ICOMPZ = 0
 | 
						|
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | 
						|
         ICOMPZ = 1
 | 
						|
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | 
						|
         ICOMPZ = 2
 | 
						|
      ELSE
 | 
						|
         ICOMPZ = -1
 | 
						|
      END IF
 | 
						|
      IF( ICOMPZ.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( LDZ.LT.1 ) .OR.
 | 
						|
     $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Compute the workspace requirements
 | 
						|
*
 | 
						|
         SMLSIZ = ILAENV( 9, 'SSTEDC', ' ', 0, 0, 0, 0 )
 | 
						|
         IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
 | 
						|
            LIWMIN = 1
 | 
						|
            LWMIN = 1
 | 
						|
         ELSE IF( N.LE.SMLSIZ ) THEN
 | 
						|
            LIWMIN = 1
 | 
						|
            LWMIN = 2*( N - 1 )
 | 
						|
         ELSE
 | 
						|
            LGN = INT( LOG( REAL( N ) )/LOG( TWO ) )
 | 
						|
            IF( 2**LGN.LT.N )
 | 
						|
     $         LGN = LGN + 1
 | 
						|
            IF( 2**LGN.LT.N )
 | 
						|
     $         LGN = LGN + 1
 | 
						|
            IF( ICOMPZ.EQ.1 ) THEN
 | 
						|
               LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
 | 
						|
               LIWMIN = 6 + 6*N + 5*N*LGN
 | 
						|
            ELSE IF( ICOMPZ.EQ.2 ) THEN
 | 
						|
               LWMIN = 1 + 4*N + N**2
 | 
						|
               LIWMIN = 3 + 5*N
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
 | 
						|
            INFO = -8
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
 | 
						|
            INFO = -10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSTEDC', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF (LQUERY) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ICOMPZ.NE.0 )
 | 
						|
     $      Z( 1, 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If the following conditional clause is removed, then the routine
 | 
						|
*     will use the Divide and Conquer routine to compute only the
 | 
						|
*     eigenvalues, which requires (3N + 3N**2) real workspace and
 | 
						|
*     (2 + 5N + 2N lg(N)) integer workspace.
 | 
						|
*     Since on many architectures SSTERF is much faster than any other
 | 
						|
*     algorithm for finding eigenvalues only, it is used here
 | 
						|
*     as the default. If the conditional clause is removed, then
 | 
						|
*     information on the size of workspace needs to be changed.
 | 
						|
*
 | 
						|
*     If COMPZ = 'N', use SSTERF to compute the eigenvalues.
 | 
						|
*
 | 
						|
      IF( ICOMPZ.EQ.0 ) THEN
 | 
						|
         CALL SSTERF( N, D, E, INFO )
 | 
						|
         GO TO 50
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If N is smaller than the minimum divide size (SMLSIZ+1), then
 | 
						|
*     solve the problem with another solver.
 | 
						|
*
 | 
						|
      IF( N.LE.SMLSIZ ) THEN
 | 
						|
*
 | 
						|
         CALL SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
 | 
						|
*        use.
 | 
						|
*
 | 
						|
         IF( ICOMPZ.EQ.1 ) THEN
 | 
						|
            STOREZ = 1 + N*N
 | 
						|
         ELSE
 | 
						|
            STOREZ = 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ICOMPZ.EQ.2 ) THEN
 | 
						|
            CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Scale.
 | 
						|
*
 | 
						|
         ORGNRM = SLANST( 'M', N, D, E )
 | 
						|
         IF( ORGNRM.EQ.ZERO )
 | 
						|
     $      GO TO 50
 | 
						|
*
 | 
						|
         EPS = SLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
         START = 1
 | 
						|
*
 | 
						|
*        while ( START <= N )
 | 
						|
*
 | 
						|
   10    CONTINUE
 | 
						|
         IF( START.LE.N ) THEN
 | 
						|
*
 | 
						|
*           Let FINISH be the position of the next subdiagonal entry
 | 
						|
*           such that E( FINISH ) <= TINY or FINISH = N if no such
 | 
						|
*           subdiagonal exists.  The matrix identified by the elements
 | 
						|
*           between START and FINISH constitutes an independent
 | 
						|
*           sub-problem.
 | 
						|
*
 | 
						|
            FINISH = START
 | 
						|
   20       CONTINUE
 | 
						|
            IF( FINISH.LT.N ) THEN
 | 
						|
               TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
 | 
						|
     $                    SQRT( ABS( D( FINISH+1 ) ) )
 | 
						|
               IF( ABS( E( FINISH ) ).GT.TINY ) THEN
 | 
						|
                  FINISH = FINISH + 1
 | 
						|
                  GO TO 20
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           (Sub) Problem determined.  Compute its size and solve it.
 | 
						|
*
 | 
						|
            M = FINISH - START + 1
 | 
						|
            IF( M.EQ.1 ) THEN
 | 
						|
               START = FINISH + 1
 | 
						|
               GO TO 10
 | 
						|
            END IF
 | 
						|
            IF( M.GT.SMLSIZ ) THEN
 | 
						|
*
 | 
						|
*              Scale.
 | 
						|
*
 | 
						|
               ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
 | 
						|
               CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
 | 
						|
     $                      INFO )
 | 
						|
               CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
 | 
						|
     $                      M-1, INFO )
 | 
						|
*
 | 
						|
               IF( ICOMPZ.EQ.1 ) THEN
 | 
						|
                  STRTRW = 1
 | 
						|
               ELSE
 | 
						|
                  STRTRW = START
 | 
						|
               END IF
 | 
						|
               CALL SLAED0( ICOMPZ, N, M, D( START ), E( START ),
 | 
						|
     $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
 | 
						|
     $                      WORK( STOREZ ), IWORK, INFO )
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
 | 
						|
     $                   MOD( INFO, ( M+1 ) ) + START - 1
 | 
						|
                  GO TO 50
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Scale back.
 | 
						|
*
 | 
						|
               CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
 | 
						|
     $                      INFO )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
               IF( ICOMPZ.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Since QR won't update a Z matrix which is larger than
 | 
						|
*                 the length of D, we must solve the sub-problem in a
 | 
						|
*                 workspace and then multiply back into Z.
 | 
						|
*
 | 
						|
                  CALL SSTEQR( 'I', M, D( START ), E( START ), WORK, M,
 | 
						|
     $                         WORK( M*M+1 ), INFO )
 | 
						|
                  CALL SLACPY( 'A', N, M, Z( 1, START ), LDZ,
 | 
						|
     $                         WORK( STOREZ ), N )
 | 
						|
                  CALL SGEMM( 'N', 'N', N, M, M, ONE,
 | 
						|
     $                        WORK( STOREZ ), N, WORK, M, ZERO,
 | 
						|
     $                        Z( 1, START ), LDZ )
 | 
						|
               ELSE IF( ICOMPZ.EQ.2 ) THEN
 | 
						|
                  CALL SSTEQR( 'I', M, D( START ), E( START ),
 | 
						|
     $                         Z( START, START ), LDZ, WORK, INFO )
 | 
						|
               ELSE
 | 
						|
                  CALL SSTERF( M, D( START ), E( START ), INFO )
 | 
						|
               END IF
 | 
						|
               IF( INFO.NE.0 ) THEN
 | 
						|
                  INFO = START*( N+1 ) + FINISH
 | 
						|
                  GO TO 50
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            START = FINISH + 1
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        endwhile
 | 
						|
*
 | 
						|
         IF( ICOMPZ.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*          Use Quick Sort
 | 
						|
*
 | 
						|
           CALL SLASRT( 'I', N, D, INFO )
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*          Use Selection Sort to minimize swaps of eigenvectors
 | 
						|
*
 | 
						|
           DO 40 II = 2, N
 | 
						|
              I = II - 1
 | 
						|
              K = I
 | 
						|
              P = D( I )
 | 
						|
              DO 30 J = II, N
 | 
						|
                 IF( D( J ).LT.P ) THEN
 | 
						|
                    K = J
 | 
						|
                    P = D( J )
 | 
						|
                 END IF
 | 
						|
   30         CONTINUE
 | 
						|
              IF( K.NE.I ) THEN
 | 
						|
                 D( K ) = D( I )
 | 
						|
                 D( I ) = P
 | 
						|
                 CALL SSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
 | 
						|
              END IF
 | 
						|
   40      CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSTEDC
 | 
						|
*
 | 
						|
      END
 |