672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGGES3 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges3.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges3.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges3.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
 | 
						|
*      $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
 | 
						|
*      $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVSL, JOBVSR, SORT
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            BWORK( * )
 | 
						|
*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | 
						|
*      $                   VSR( LDVSR, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*       .. Function Arguments ..
 | 
						|
*       LOGICAL            SELCTG
 | 
						|
*       EXTERNAL           SELCTG
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
 | 
						|
*> the generalized eigenvalues, the generalized real Schur form (S,T),
 | 
						|
*> optionally, the left and/or right matrices of Schur vectors (VSL and
 | 
						|
*> VSR). This gives the generalized Schur factorization
 | 
						|
*>
 | 
						|
*>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
 | 
						|
*>
 | 
						|
*> Optionally, it also orders the eigenvalues so that a selected cluster
 | 
						|
*> of eigenvalues appears in the leading diagonal blocks of the upper
 | 
						|
*> quasi-triangular matrix S and the upper triangular matrix T.The
 | 
						|
*> leading columns of VSL and VSR then form an orthonormal basis for the
 | 
						|
*> corresponding left and right eigenspaces (deflating subspaces).
 | 
						|
*>
 | 
						|
*> (If only the generalized eigenvalues are needed, use the driver
 | 
						|
*> SGGEV instead, which is faster.)
 | 
						|
*>
 | 
						|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 | 
						|
*> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 | 
						|
*> usually represented as the pair (alpha,beta), as there is a
 | 
						|
*> reasonable interpretation for beta=0 or both being zero.
 | 
						|
*>
 | 
						|
*> A pair of matrices (S,T) is in generalized real Schur form if T is
 | 
						|
*> upper triangular with non-negative diagonal and S is block upper
 | 
						|
*> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
 | 
						|
*> to real generalized eigenvalues, while 2-by-2 blocks of S will be
 | 
						|
*> "standardized" by making the corresponding elements of T have the
 | 
						|
*> form:
 | 
						|
*>         [  a  0  ]
 | 
						|
*>         [  0  b  ]
 | 
						|
*>
 | 
						|
*> and the pair of corresponding 2-by-2 blocks in S and T will have a
 | 
						|
*> complex conjugate pair of generalized eigenvalues.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVSL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSL is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the left Schur vectors;
 | 
						|
*>          = 'V':  compute the left Schur vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVSR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVSR is CHARACTER*1
 | 
						|
*>          = 'N':  do not compute the right Schur vectors;
 | 
						|
*>          = 'V':  compute the right Schur vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SORT
 | 
						|
*> \verbatim
 | 
						|
*>          SORT is CHARACTER*1
 | 
						|
*>          Specifies whether or not to order the eigenvalues on the
 | 
						|
*>          diagonal of the generalized Schur form.
 | 
						|
*>          = 'N':  Eigenvalues are not ordered;
 | 
						|
*>          = 'S':  Eigenvalues are ordered (see SELCTG);
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELCTG
 | 
						|
*> \verbatim
 | 
						|
*>          SELCTG is a LOGICAL FUNCTION of three REAL arguments
 | 
						|
*>          SELCTG must be declared EXTERNAL in the calling subroutine.
 | 
						|
*>          If SORT = 'N', SELCTG is not referenced.
 | 
						|
*>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
 | 
						|
*>          to the top left of the Schur form.
 | 
						|
*>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
 | 
						|
*>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
 | 
						|
*>          one of a complex conjugate pair of eigenvalues is selected,
 | 
						|
*>          then both complex eigenvalues are selected.
 | 
						|
*>
 | 
						|
*>          Note that in the ill-conditioned case, a selected complex
 | 
						|
*>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
 | 
						|
*>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
 | 
						|
*>          in this case.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, N)
 | 
						|
*>          On entry, the first of the pair of matrices.
 | 
						|
*>          On exit, A has been overwritten by its generalized Schur
 | 
						|
*>          form S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, N)
 | 
						|
*>          On entry, the second of the pair of matrices.
 | 
						|
*>          On exit, B has been overwritten by its generalized Schur
 | 
						|
*>          form T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SDIM
 | 
						|
*> \verbatim
 | 
						|
*>          SDIM is INTEGER
 | 
						|
*>          If SORT = 'N', SDIM = 0.
 | 
						|
*>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
 | 
						|
*>          for which SELCTG is true.  (Complex conjugate pairs for which
 | 
						|
*>          SELCTG is true for either eigenvalue count as 2.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL array, dimension (N)
 | 
						|
*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | 
						|
*>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
 | 
						|
*>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
 | 
						|
*>          form (S,T) that would result if the 2-by-2 diagonal blocks of
 | 
						|
*>          the real Schur form of (A,B) were further reduced to
 | 
						|
*>          triangular form using 2-by-2 complex unitary transformations.
 | 
						|
*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | 
						|
*>          positive, then the j-th and (j+1)-st eigenvalues are a
 | 
						|
*>          complex conjugate pair, with ALPHAI(j+1) negative.
 | 
						|
*>
 | 
						|
*>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
 | 
						|
*>          may easily over- or underflow, and BETA(j) may even be zero.
 | 
						|
*>          Thus, the user should avoid naively computing the ratio.
 | 
						|
*>          However, ALPHAR and ALPHAI will be always less than and
 | 
						|
*>          usually comparable with norm(A) in magnitude, and BETA always
 | 
						|
*>          less than and usually comparable with norm(B).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSL
 | 
						|
*> \verbatim
 | 
						|
*>          VSL is REAL array, dimension (LDVSL,N)
 | 
						|
*>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
 | 
						|
*>          Not referenced if JOBVSL = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSL is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSL. LDVSL >=1, and
 | 
						|
*>          if JOBVSL = 'V', LDVSL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VSR
 | 
						|
*> \verbatim
 | 
						|
*>          VSR is REAL array, dimension (LDVSR,N)
 | 
						|
*>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
 | 
						|
*>          Not referenced if JOBVSR = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVSR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVSR is INTEGER
 | 
						|
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
 | 
						|
*>          if JOBVSR = 'V', LDVSR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWORK
 | 
						|
*> \verbatim
 | 
						|
*>          BWORK is LOGICAL array, dimension (N)
 | 
						|
*>          Not referenced if SORT = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          = 1,...,N:
 | 
						|
*>                The QZ iteration failed.  (A,B) are not in Schur
 | 
						|
*>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
 | 
						|
*>                be correct for j=INFO+1,...,N.
 | 
						|
*>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
 | 
						|
*>                =N+2: after reordering, roundoff changed values of
 | 
						|
*>                      some complex eigenvalues so that leading
 | 
						|
*>                      eigenvalues in the Generalized Schur form no
 | 
						|
*>                      longer satisfy SELCTG=.TRUE.  This could also
 | 
						|
*>                      be caused due to scaling.
 | 
						|
*>                =N+3: reordering failed in STGSEN.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date January 2015
 | 
						|
*
 | 
						|
*> \ingroup realGEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
 | 
						|
     $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
 | 
						|
     $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.6.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     January 2015
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVSL, JOBVSR, SORT
 | 
						|
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            BWORK( * )
 | 
						|
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
     $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 | 
						|
     $                   VSR( LDVSR, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*     .. Function Arguments ..
 | 
						|
      LOGICAL            SELCTG
 | 
						|
      EXTERNAL           SELCTG
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
 | 
						|
     $                   LQUERY, LST2SL, WANTST
 | 
						|
      INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
 | 
						|
     $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT
 | 
						|
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
 | 
						|
     $                   PVSR, SAFMAX, SAFMIN, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IDUM( 1 )
 | 
						|
      REAL               DIF( 2 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHD3, SHGEQZ, SLABAD,
 | 
						|
     $                   SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGSEN,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode the input arguments
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSL, 'N' ) ) THEN
 | 
						|
         IJOBVL = 1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
 | 
						|
         IJOBVL = 2
 | 
						|
         ILVSL = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVL = -1
 | 
						|
         ILVSL = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOBVSR, 'N' ) ) THEN
 | 
						|
         IJOBVR = 1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
 | 
						|
         IJOBVR = 2
 | 
						|
         ILVSR = .TRUE.
 | 
						|
      ELSE
 | 
						|
         IJOBVR = -1
 | 
						|
         ILVSR = .FALSE.
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WANTST = LSAME( SORT, 'S' )
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( IJOBVL.LE.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( IJOBVR.LE.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
 | 
						|
         INFO = -15
 | 
						|
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
 | 
						|
         INFO = -17
 | 
						|
      ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -19
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
 | 
						|
         LWKOPT = MAX( 6*N+16, 3*N+INT( WORK( 1 ) ) )
 | 
						|
         CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
 | 
						|
     $                -1, IERR )
 | 
						|
         LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) )
 | 
						|
         IF( ILVSL ) THEN
 | 
						|
            CALL SORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
 | 
						|
            LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) )
 | 
						|
         END IF
 | 
						|
         CALL SGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
 | 
						|
     $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
 | 
						|
         LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) )
 | 
						|
         CALL SHGEQZ( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
 | 
						|
     $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 | 
						|
     $                WORK, -1, IERR )
 | 
						|
         LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) )
 | 
						|
         IF( WANTST ) THEN
 | 
						|
            CALL STGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
 | 
						|
     $                   ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 | 
						|
     $                   SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1,
 | 
						|
     $                   IERR )
 | 
						|
            LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGGES3 ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SDIM = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SAFMIN = SLAMCH( 'S' )
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
      CALL SLABAD( SAFMIN, SAFMAX )
 | 
						|
      SMLNUM = SQRT( SAFMIN ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
 | 
						|
      ILASCL = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         ANRMTO = SMLNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         ANRMTO = BIGNUM
 | 
						|
         ILASCL = .TRUE.
 | 
						|
      END IF
 | 
						|
      IF( ILASCL )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
 | 
						|
*
 | 
						|
*     Scale B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
 | 
						|
      ILBSCL = .FALSE.
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
         BNRMTO = SMLNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
         BNRMTO = BIGNUM
 | 
						|
         ILBSCL = .TRUE.
 | 
						|
      END IF
 | 
						|
      IF( ILBSCL )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
 | 
						|
*
 | 
						|
*     Permute the matrix to make it more nearly triangular
 | 
						|
*
 | 
						|
      ILEFT = 1
 | 
						|
      IRIGHT = N + 1
 | 
						|
      IWRK = IRIGHT + N
 | 
						|
      CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $             WORK( IRIGHT ), WORK( IWRK ), IERR )
 | 
						|
*
 | 
						|
*     Reduce B to triangular form (QR decomposition of B)
 | 
						|
*
 | 
						|
      IROWS = IHI + 1 - ILO
 | 
						|
      ICOLS = N + 1 - ILO
 | 
						|
      ITAU = IWRK
 | 
						|
      IWRK = ITAU + IROWS
 | 
						|
      CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
 | 
						|
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
*
 | 
						|
*     Apply the orthogonal transformation to matrix A
 | 
						|
*
 | 
						|
      CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
 | 
						|
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
 | 
						|
     $             LWORK+1-IWRK, IERR )
 | 
						|
*
 | 
						|
*     Initialize VSL
 | 
						|
*
 | 
						|
      IF( ILVSL ) THEN
 | 
						|
         CALL SLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
 | 
						|
         IF( IROWS.GT.1 ) THEN
 | 
						|
            CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
 | 
						|
     $                   VSL( ILO+1, ILO ), LDVSL )
 | 
						|
         END IF
 | 
						|
         CALL SORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
 | 
						|
     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize VSR
 | 
						|
*
 | 
						|
      IF( ILVSR )
 | 
						|
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
 | 
						|
*
 | 
						|
*     Reduce to generalized Hessenberg form
 | 
						|
*
 | 
						|
      CALL SGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
 | 
						|
     $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
*
 | 
						|
*     Perform QZ algorithm, computing Schur vectors if desired
 | 
						|
*
 | 
						|
      IWRK = ITAU
 | 
						|
      CALL SHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
 | 
						|
     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
 | 
						|
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
 | 
						|
      IF( IERR.NE.0 ) THEN
 | 
						|
         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
 | 
						|
            INFO = IERR
 | 
						|
         ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
 | 
						|
            INFO = IERR - N
 | 
						|
         ELSE
 | 
						|
            INFO = N + 1
 | 
						|
         END IF
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Sort eigenvalues ALPHA/BETA if desired
 | 
						|
*
 | 
						|
      SDIM = 0
 | 
						|
      IF( WANTST ) THEN
 | 
						|
*
 | 
						|
*        Undo scaling on eigenvalues before SELCTGing
 | 
						|
*
 | 
						|
         IF( ILASCL ) THEN
 | 
						|
            CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
 | 
						|
     $                   IERR )
 | 
						|
            CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
 | 
						|
     $                   IERR )
 | 
						|
         END IF
 | 
						|
         IF( ILBSCL )
 | 
						|
     $      CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | 
						|
*
 | 
						|
*        Select eigenvalues
 | 
						|
*
 | 
						|
         DO 10 I = 1, N
 | 
						|
            BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
         CALL STGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
 | 
						|
     $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
 | 
						|
     $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
 | 
						|
     $                IERR )
 | 
						|
         IF( IERR.EQ.1 )
 | 
						|
     $      INFO = N + 3
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply back-permutation to VSL and VSR
 | 
						|
*
 | 
						|
      IF( ILVSL )
 | 
						|
     $   CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
 | 
						|
*
 | 
						|
      IF( ILVSR )
 | 
						|
     $   CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
 | 
						|
     $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
 | 
						|
*
 | 
						|
*     Check if unscaling would cause over/underflow, if so, rescale
 | 
						|
*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
 | 
						|
*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
 | 
						|
*
 | 
						|
      IF( ILASCL )THEN
 | 
						|
         DO 50 I = 1, N
 | 
						|
            IF( ALPHAI( I ).NE.ZERO ) THEN
 | 
						|
               IF( ( ALPHAR( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR.
 | 
						|
     $             ( SAFMIN/ALPHAR( I ) ).GT.( ANRM/ANRMTO ) ) THEN
 | 
						|
                  WORK( 1 ) = ABS( A( I, I )/ALPHAR( I ) )
 | 
						|
                  BETA( I ) = BETA( I )*WORK( 1 )
 | 
						|
                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
 | 
						|
                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
 | 
						|
               ELSE IF( ( ALPHAI( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR.
 | 
						|
     $             ( SAFMIN/ALPHAI( I ) ).GT.( ANRM/ANRMTO ) ) THEN
 | 
						|
                  WORK( 1 ) = ABS( A( I, I+1 )/ALPHAI( I ) )
 | 
						|
                  BETA( I ) = BETA( I )*WORK( 1 )
 | 
						|
                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
 | 
						|
                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL )THEN
 | 
						|
         DO 60 I = 1, N
 | 
						|
            IF( ALPHAI( I ).NE.ZERO ) THEN
 | 
						|
                IF( ( BETA( I )/SAFMAX ).GT.( BNRMTO/BNRM ) .OR.
 | 
						|
     $              ( SAFMIN/BETA( I ) ).GT.( BNRM/BNRMTO ) ) THEN
 | 
						|
                   WORK( 1 ) = ABS(B( I, I )/BETA( I ))
 | 
						|
                   BETA( I ) = BETA( I )*WORK( 1 )
 | 
						|
                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
 | 
						|
                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
 | 
						|
                END IF
 | 
						|
             END IF
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( ILASCL ) THEN
 | 
						|
         CALL SLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ILBSCL ) THEN
 | 
						|
         CALL SLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTST ) THEN
 | 
						|
*
 | 
						|
*        Check if reordering is correct
 | 
						|
*
 | 
						|
         LASTSL = .TRUE.
 | 
						|
         LST2SL = .TRUE.
 | 
						|
         SDIM = 0
 | 
						|
         IP = 0
 | 
						|
         DO 30 I = 1, N
 | 
						|
            CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
 | 
						|
            IF( ALPHAI( I ).EQ.ZERO ) THEN
 | 
						|
               IF( CURSL )
 | 
						|
     $            SDIM = SDIM + 1
 | 
						|
               IP = 0
 | 
						|
               IF( CURSL .AND. .NOT.LASTSL )
 | 
						|
     $            INFO = N + 2
 | 
						|
            ELSE
 | 
						|
               IF( IP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Last eigenvalue of conjugate pair
 | 
						|
*
 | 
						|
                  CURSL = CURSL .OR. LASTSL
 | 
						|
                  LASTSL = CURSL
 | 
						|
                  IF( CURSL )
 | 
						|
     $               SDIM = SDIM + 2
 | 
						|
                  IP = -1
 | 
						|
                  IF( CURSL .AND. .NOT.LST2SL )
 | 
						|
     $               INFO = N + 2
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 First eigenvalue of conjugate pair
 | 
						|
*
 | 
						|
                  IP = 1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            LST2SL = LASTSL
 | 
						|
            LASTSL = CURSL
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGGES3
 | 
						|
*
 | 
						|
      END
 |