301 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			301 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSPTRD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSPTRD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AP( * ), D( * ), E( * ), TAU( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSPTRD reduces a real symmetric matrix A stored in packed form to
 | 
						|
*> symmetric tridiagonal form T by an orthogonal similarity
 | 
						|
*> transformation: Q**T * A * Q = T.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
 | 
						|
*>          of A are overwritten by the corresponding elements of the
 | 
						|
*>          tridiagonal matrix T, and the elements above the first
 | 
						|
*>          superdiagonal, with the array TAU, represent the orthogonal
 | 
						|
*>          matrix Q as a product of elementary reflectors; if UPLO
 | 
						|
*>          = 'L', the diagonal and first subdiagonal of A are over-
 | 
						|
*>          written by the corresponding elements of the tridiagonal
 | 
						|
*>          matrix T, and the elements below the first subdiagonal, with
 | 
						|
*>          the array TAU, represent the orthogonal matrix Q as a product
 | 
						|
*>          of elementary reflectors. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The diagonal elements of the tridiagonal matrix T:
 | 
						|
*>          D(i) = A(i,i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The off-diagonal elements of the tridiagonal matrix T:
 | 
						|
*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The scalar factors of the elementary reflectors (see Further
 | 
						|
*>          Details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
 | 
						|
*>  reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(n-1) . . . H(2) H(1).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**T
 | 
						|
*>
 | 
						|
*>  where tau is a real scalar, and v is a real vector with
 | 
						|
*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
 | 
						|
*>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
 | 
						|
*>
 | 
						|
*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
 | 
						|
*>  reflectors
 | 
						|
*>
 | 
						|
*>     Q = H(1) H(2) . . . H(n-1).
 | 
						|
*>
 | 
						|
*>  Each H(i) has the form
 | 
						|
*>
 | 
						|
*>     H(i) = I - tau * v * v**T
 | 
						|
*>
 | 
						|
*>  where tau is a real scalar, and v is a real vector with
 | 
						|
*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
 | 
						|
*>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AP( * ), D( * ), E( * ), TAU( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO, HALF
 | 
						|
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0,
 | 
						|
     $                   HALF = 1.0D0 / 2.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, I1, I1I1, II
 | 
						|
      DOUBLE PRECISION   ALPHA, TAUI
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DLARFG, DSPMV, DSPR2, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DDOT
 | 
						|
      EXTERNAL           LSAME, DDOT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSPTRD', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Reduce the upper triangle of A.
 | 
						|
*        I1 is the index in AP of A(1,I+1).
 | 
						|
*
 | 
						|
         I1 = N*( N-1 ) / 2 + 1
 | 
						|
         DO 10 I = N - 1, 1, -1
 | 
						|
*
 | 
						|
*           Generate elementary reflector H(i) = I - tau * v * v**T
 | 
						|
*           to annihilate A(1:i-1,i+1)
 | 
						|
*
 | 
						|
            CALL DLARFG( I, AP( I1+I-1 ), AP( I1 ), 1, TAUI )
 | 
						|
            E( I ) = AP( I1+I-1 )
 | 
						|
*
 | 
						|
            IF( TAUI.NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*              Apply H(i) from both sides to A(1:i,1:i)
 | 
						|
*
 | 
						|
               AP( I1+I-1 ) = ONE
 | 
						|
*
 | 
						|
*              Compute  y := tau * A * v  storing y in TAU(1:i)
 | 
						|
*
 | 
						|
               CALL DSPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
 | 
						|
     $                     1 )
 | 
						|
*
 | 
						|
*              Compute  w := y - 1/2 * tau * (y**T *v) * v
 | 
						|
*
 | 
						|
               ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, AP( I1 ), 1 )
 | 
						|
               CALL DAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
 | 
						|
*
 | 
						|
*              Apply the transformation as a rank-2 update:
 | 
						|
*                 A := A - v * w**T - w * v**T
 | 
						|
*
 | 
						|
               CALL DSPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
 | 
						|
*
 | 
						|
               AP( I1+I-1 ) = E( I )
 | 
						|
            END IF
 | 
						|
            D( I+1 ) = AP( I1+I )
 | 
						|
            TAU( I ) = TAUI
 | 
						|
            I1 = I1 - I
 | 
						|
   10    CONTINUE
 | 
						|
         D( 1 ) = AP( 1 )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Reduce the lower triangle of A. II is the index in AP of
 | 
						|
*        A(i,i) and I1I1 is the index of A(i+1,i+1).
 | 
						|
*
 | 
						|
         II = 1
 | 
						|
         DO 20 I = 1, N - 1
 | 
						|
            I1I1 = II + N - I + 1
 | 
						|
*
 | 
						|
*           Generate elementary reflector H(i) = I - tau * v * v**T
 | 
						|
*           to annihilate A(i+2:n,i)
 | 
						|
*
 | 
						|
            CALL DLARFG( N-I, AP( II+1 ), AP( II+2 ), 1, TAUI )
 | 
						|
            E( I ) = AP( II+1 )
 | 
						|
*
 | 
						|
            IF( TAUI.NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*              Apply H(i) from both sides to A(i+1:n,i+1:n)
 | 
						|
*
 | 
						|
               AP( II+1 ) = ONE
 | 
						|
*
 | 
						|
*              Compute  y := tau * A * v  storing y in TAU(i:n-1)
 | 
						|
*
 | 
						|
               CALL DSPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
 | 
						|
     $                     ZERO, TAU( I ), 1 )
 | 
						|
*
 | 
						|
*              Compute  w := y - 1/2 * tau * (y**T *v) * v
 | 
						|
*
 | 
						|
               ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, AP( II+1 ),
 | 
						|
     $                 1 )
 | 
						|
               CALL DAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
 | 
						|
*
 | 
						|
*              Apply the transformation as a rank-2 update:
 | 
						|
*                 A := A - v * w**T - w * v**T
 | 
						|
*
 | 
						|
               CALL DSPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
 | 
						|
     $                     AP( I1I1 ) )
 | 
						|
*
 | 
						|
               AP( II+1 ) = E( I )
 | 
						|
            END IF
 | 
						|
            D( I ) = AP( II )
 | 
						|
            TAU( I ) = TAUI
 | 
						|
            II = I1I1
 | 
						|
   20    CONTINUE
 | 
						|
         D( N ) = AP( II )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSPTRD
 | 
						|
*
 | 
						|
      END
 |