434 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> DSGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSGESV + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsgesv.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsgesv.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsgesv.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
 | 
						|
*                          SWORK, ITER, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               SWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSGESV computes the solution to a real system of linear equations
 | 
						|
*>    A * X = B,
 | 
						|
*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
 | 
						|
*>
 | 
						|
*> DSGESV first attempts to factorize the matrix in SINGLE PRECISION
 | 
						|
*> and use this factorization within an iterative refinement procedure
 | 
						|
*> to produce a solution with DOUBLE PRECISION normwise backward error
 | 
						|
*> quality (see below). If the approach fails the method switches to a
 | 
						|
*> DOUBLE PRECISION factorization and solve.
 | 
						|
*>
 | 
						|
*> The iterative refinement is not going to be a winning strategy if
 | 
						|
*> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
 | 
						|
*> performance is too small. A reasonable strategy should take the
 | 
						|
*> number of right-hand sides and the size of the matrix into account.
 | 
						|
*> This might be done with a call to ILAENV in the future. Up to now, we
 | 
						|
*> always try iterative refinement.
 | 
						|
*>
 | 
						|
*> The iterative refinement process is stopped if
 | 
						|
*>     ITER > ITERMAX
 | 
						|
*> or for all the RHS we have:
 | 
						|
*>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
 | 
						|
*> where
 | 
						|
*>     o ITER is the number of the current iteration in the iterative
 | 
						|
*>       refinement process
 | 
						|
*>     o RNRM is the infinity-norm of the residual
 | 
						|
*>     o XNRM is the infinity-norm of the solution
 | 
						|
*>     o ANRM is the infinity-operator-norm of the matrix A
 | 
						|
*>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
 | 
						|
*> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
 | 
						|
*> respectively.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of linear equations, i.e., the order of the
 | 
						|
*>          matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array,
 | 
						|
*>          dimension (LDA,N)
 | 
						|
*>          On entry, the N-by-N coefficient matrix A.
 | 
						|
*>          On exit, if iterative refinement has been successfully used
 | 
						|
*>          (INFO = 0 and ITER >= 0, see description below), then A is
 | 
						|
*>          unchanged, if double precision factorization has been used
 | 
						|
*>          (INFO = 0 and ITER < 0, see description below), then the
 | 
						|
*>          array A contains the factors L and U from the factorization
 | 
						|
*>          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices that define the permutation matrix P;
 | 
						|
*>          row i of the matrix was interchanged with row IPIV(i).
 | 
						|
*>          Corresponds either to the single precision factorization
 | 
						|
*>          (if INFO = 0 and ITER >= 0) or the double precision
 | 
						|
*>          factorization (if INFO = 0 and ITER < 0).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          The N-by-NRHS right hand side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          If INFO = 0, the N-by-NRHS solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
 | 
						|
*>          This array is used to hold the residual vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SWORK
 | 
						|
*> \verbatim
 | 
						|
*>          SWORK is REAL array, dimension (N*(N+NRHS))
 | 
						|
*>          This array is used to use the single precision matrix and the
 | 
						|
*>          right-hand sides or solutions in single precision.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ITER
 | 
						|
*> \verbatim
 | 
						|
*>          ITER is INTEGER
 | 
						|
*>          < 0: iterative refinement has failed, double precision
 | 
						|
*>               factorization has been performed
 | 
						|
*>               -1 : the routine fell back to full precision for
 | 
						|
*>                    implementation- or machine-specific reasons
 | 
						|
*>               -2 : narrowing the precision induced an overflow,
 | 
						|
*>                    the routine fell back to full precision
 | 
						|
*>               -3 : failure of SGETRF
 | 
						|
*>               -31: stop the iterative refinement after the 30th
 | 
						|
*>                    iterations
 | 
						|
*>          > 0: iterative refinement has been successfully used.
 | 
						|
*>               Returns the number of iterations
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
 | 
						|
*>                exactly zero.  The factorization has been completed,
 | 
						|
*>                but the factor U is exactly singular, so the solution
 | 
						|
*>                could not be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleGEsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
 | 
						|
     $                   SWORK, ITER, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.8.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               SWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      LOGICAL            DOITREF
 | 
						|
      PARAMETER          ( DOITREF = .TRUE. )
 | 
						|
*
 | 
						|
      INTEGER            ITERMAX
 | 
						|
      PARAMETER          ( ITERMAX = 30 )
 | 
						|
*
 | 
						|
      DOUBLE PRECISION   BWDMAX
 | 
						|
      PARAMETER          ( BWDMAX = 1.0E+00 )
 | 
						|
*
 | 
						|
      DOUBLE PRECISION   NEGONE, ONE
 | 
						|
      PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IITER, PTSA, PTSX
 | 
						|
      DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
 | 
						|
*
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, DGETRF, DGETRS,
 | 
						|
     $                   SGETRF, SGETRS, SLAG2D, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           IDAMAX, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      ITER = 0
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSGESV', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if (N.EQ.0).
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Skip single precision iterative refinement if a priori slower
 | 
						|
*     than double precision factorization.
 | 
						|
*
 | 
						|
      IF( .NOT.DOITREF ) THEN
 | 
						|
         ITER = -1
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute some constants.
 | 
						|
*
 | 
						|
      ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
 | 
						|
*
 | 
						|
*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
 | 
						|
*
 | 
						|
      PTSA = 1
 | 
						|
      PTSX = PTSA + N*N
 | 
						|
*
 | 
						|
*     Convert B from double precision to single precision and store the
 | 
						|
*     result in SX.
 | 
						|
*
 | 
						|
      CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -2
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Convert A from double precision to single precision and store the
 | 
						|
*     result in SA.
 | 
						|
*
 | 
						|
      CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -2
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the LU factorization of SA.
 | 
						|
*
 | 
						|
      CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -3
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve the system SA*SX = SB.
 | 
						|
*
 | 
						|
      CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
 | 
						|
     $             SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
*     Convert SX back to double precision
 | 
						|
*
 | 
						|
      CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
 | 
						|
*
 | 
						|
*     Compute R = B - AX (R is WORK).
 | 
						|
*
 | 
						|
      CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
      CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
 | 
						|
     $            LDA, X, LDX, ONE, WORK, N )
 | 
						|
*
 | 
						|
*     Check whether the NRHS normwise backward errors satisfy the
 | 
						|
*     stopping criterion. If yes, set ITER=0 and return.
 | 
						|
*
 | 
						|
      DO I = 1, NRHS
 | 
						|
         XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
 | 
						|
         RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
 | 
						|
         IF( RNRM.GT.XNRM*CTE )
 | 
						|
     $      GO TO 10
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     If we are here, the NRHS normwise backward errors satisfy the
 | 
						|
*     stopping criterion. We are good to exit.
 | 
						|
*
 | 
						|
      ITER = 0
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 30 IITER = 1, ITERMAX
 | 
						|
*
 | 
						|
*        Convert R (in WORK) from double precision to single precision
 | 
						|
*        and store the result in SX.
 | 
						|
*
 | 
						|
         CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            ITER = -2
 | 
						|
            GO TO 40
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve the system SA*SX = SR.
 | 
						|
*
 | 
						|
         CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
 | 
						|
     $                SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
*        Convert SX back to double precision and update the current
 | 
						|
*        iterate.
 | 
						|
*
 | 
						|
         CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
 | 
						|
*
 | 
						|
         DO I = 1, NRHS
 | 
						|
            CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute R = B - AX (R is WORK).
 | 
						|
*
 | 
						|
         CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
         CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
 | 
						|
     $               A, LDA, X, LDX, ONE, WORK, N )
 | 
						|
*
 | 
						|
*        Check whether the NRHS normwise backward errors satisfy the
 | 
						|
*        stopping criterion. If yes, set ITER=IITER>0 and return.
 | 
						|
*
 | 
						|
         DO I = 1, NRHS
 | 
						|
            XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
 | 
						|
            RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
 | 
						|
            IF( RNRM.GT.XNRM*CTE )
 | 
						|
     $         GO TO 20
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        If we are here, the NRHS normwise backward errors satisfy the
 | 
						|
*        stopping criterion, we are good to exit.
 | 
						|
*
 | 
						|
         ITER = IITER
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     If we are at this place of the code, this is because we have
 | 
						|
*     performed ITER=ITERMAX iterations and never satisfied the
 | 
						|
*     stopping criterion, set up the ITER flag accordingly and follow up
 | 
						|
*     on double precision routine.
 | 
						|
*
 | 
						|
      ITER = -ITERMAX - 1
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Single-precision iterative refinement failed to converge to a
 | 
						|
*     satisfactory solution, so we resort to double precision.
 | 
						|
*
 | 
						|
      CALL DGETRF( N, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
 | 
						|
      CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
 | 
						|
     $             INFO )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSGESV.
 | 
						|
*
 | 
						|
      END
 |