373 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSBGVD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSBGVD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | 
						|
*                          Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
 | 
						|
*      $                   WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
 | 
						|
*> of a real generalized symmetric-definite banded eigenproblem, of the
 | 
						|
*> form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
 | 
						|
*> banded, and B is also positive definite.  If eigenvectors are
 | 
						|
*> desired, it uses a divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*> The divide and conquer algorithm makes very mild assumptions about
 | 
						|
*> floating point arithmetic. It will work on machines with a guard
 | 
						|
*> digit in add/subtract, or on those binary machines without guard
 | 
						|
*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | 
						|
*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KA
 | 
						|
*> \verbatim
 | 
						|
*>          KA is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KB
 | 
						|
*> \verbatim
 | 
						|
*>          KB is INTEGER
 | 
						|
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
 | 
						|
*>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric band
 | 
						|
*>          matrix A, stored in the first ka+1 rows of the array.  The
 | 
						|
*>          j-th column of A is stored in the j-th column of the array AB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 | 
						|
*>
 | 
						|
*>          On exit, the contents of AB are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KA+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BB
 | 
						|
*> \verbatim
 | 
						|
*>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric band
 | 
						|
*>          matrix B, stored in the first kb+1 rows of the array.  The
 | 
						|
*>          j-th column of B is stored in the j-th column of the array BB
 | 
						|
*>          as follows:
 | 
						|
*>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 | 
						|
*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 | 
						|
*>
 | 
						|
*>          On exit, the factor S from the split Cholesky factorization
 | 
						|
*>          B = S**T*S, as returned by DPBSTF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDBB
 | 
						|
*> \verbatim
 | 
						|
*>          LDBB is INTEGER
 | 
						|
*>          The leading dimension of the array BB.  LDBB >= KB+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | 
						|
*>          eigenvectors, with the i-th column of Z holding the
 | 
						|
*>          eigenvector associated with W(i).  The eigenvectors are
 | 
						|
*>          normalized so Z**T*B*Z = I.
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If N <= 1,               LWORK >= 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal sizes of the WORK and IWORK
 | 
						|
*>          arrays, returns these values as the first entries of the WORK
 | 
						|
*>          and IWORK arrays, and no error message related to LWORK or
 | 
						|
*>          LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.
 | 
						|
*>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
 | 
						|
*>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal sizes of the WORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK and IWORK arrays, and no error message related to
 | 
						|
*>          LWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, and i is:
 | 
						|
*>             <= N:  the algorithm failed to converge:
 | 
						|
*>                    i off-diagonal elements of an intermediate
 | 
						|
*>                    tridiagonal form did not converge to zero;
 | 
						|
*>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
 | 
						|
*>                    returned INFO = i: B is not positive definite.
 | 
						|
*>                    The factorization of B could not be completed and
 | 
						|
*>                    no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHEReigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
 | 
						|
     $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
 | 
						|
     $                   WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER, WANTZ
 | 
						|
      CHARACTER          VECT
 | 
						|
      INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
 | 
						|
     $                   LWMIN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
 | 
						|
     $                   DSTERF, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LE.1 ) THEN
 | 
						|
         LIWMIN = 1
 | 
						|
         LWMIN = 1
 | 
						|
      ELSE IF( WANTZ ) THEN
 | 
						|
         LIWMIN = 3 + 5*N
 | 
						|
         LWMIN = 1 + 5*N + 2*N**2
 | 
						|
      ELSE
 | 
						|
         LIWMIN = 1
 | 
						|
         LWMIN = 2*N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KA.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDAB.LT.KA+1 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDBB.LT.KB+1 ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -14
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -16
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DSBGVD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a split Cholesky factorization of B.
 | 
						|
*
 | 
						|
      CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem.
 | 
						|
*
 | 
						|
      INDE = 1
 | 
						|
      INDWRK = INDE + N
 | 
						|
      INDWK2 = INDWRK + N*N
 | 
						|
      LLWRK2 = LWORK - INDWK2 + 1
 | 
						|
      CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
 | 
						|
     $             WORK, IINFO )
 | 
						|
*
 | 
						|
*     Reduce to tridiagonal form.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         VECT = 'U'
 | 
						|
      ELSE
 | 
						|
         VECT = 'N'
 | 
						|
      END IF
 | 
						|
      CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
 | 
						|
     $             WORK( INDWRK ), IINFO )
 | 
						|
*
 | 
						|
*     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
 | 
						|
*
 | 
						|
      IF( .NOT.WANTZ ) THEN
 | 
						|
         CALL DSTERF( N, W, WORK( INDE ), INFO )
 | 
						|
      ELSE
 | 
						|
         CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
 | 
						|
     $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
 | 
						|
         CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
 | 
						|
     $               ZERO, WORK( INDWK2 ), N )
 | 
						|
         CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSBGVD
 | 
						|
*
 | 
						|
      END
 |