494 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			494 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLALSA + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
 | 
						|
*                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
 | 
						|
*                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
 | 
						|
*      $                   SMLSIZ
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | 
						|
*      $                   K( * ), PERM( LDGCOL, * )
 | 
						|
*       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
 | 
						|
*      $                   DIFL( LDU, * ), DIFR( LDU, * ),
 | 
						|
*      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
 | 
						|
*      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
 | 
						|
*      $                   Z( LDU, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLALSA is an itermediate step in solving the least squares problem
 | 
						|
*> by computing the SVD of the coefficient matrix in compact form (The
 | 
						|
*> singular vectors are computed as products of simple orthorgonal
 | 
						|
*> matrices.).
 | 
						|
*>
 | 
						|
*> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
 | 
						|
*> matrix of an upper bidiagonal matrix to the right hand side; and if
 | 
						|
*> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
 | 
						|
*> right hand side. The singular vector matrices were generated in
 | 
						|
*> compact form by DLALSA.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ICOMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          ICOMPQ is INTEGER
 | 
						|
*>         Specifies whether the left or the right singular vector
 | 
						|
*>         matrix is involved.
 | 
						|
*>         = 0: Left singular vector matrix
 | 
						|
*>         = 1: Right singular vector matrix
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SMLSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          SMLSIZ is INTEGER
 | 
						|
*>         The maximum size of the subproblems at the bottom of the
 | 
						|
*>         computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The row and column dimensions of the upper bidiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>         The number of columns of B and BX. NRHS must be at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
 | 
						|
*>         On input, B contains the right hand sides of the least
 | 
						|
*>         squares problem in rows 1 through M.
 | 
						|
*>         On output, B contains the solution X in rows 1 through N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>         The leading dimension of B in the calling subprogram.
 | 
						|
*>         LDB must be at least max(1,MAX( M, N ) ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BX
 | 
						|
*> \verbatim
 | 
						|
*>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
 | 
						|
*>         On exit, the result of applying the left or right singular
 | 
						|
*>         vector matrix to B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDBX
 | 
						|
*> \verbatim
 | 
						|
*>          LDBX is INTEGER
 | 
						|
*>         The leading dimension of BX.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
 | 
						|
*>         On entry, U contains the left singular vector matrices of all
 | 
						|
*>         subproblems at the bottom level.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER, LDU = > N.
 | 
						|
*>         The leading dimension of arrays U, VT, DIFL, DIFR,
 | 
						|
*>         POLES, GIVNUM, and Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
 | 
						|
*>         On entry, VT**T contains the right singular vector matrices of
 | 
						|
*>         all subproblems at the bottom level.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER array, dimension ( N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIFL
 | 
						|
*> \verbatim
 | 
						|
*>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
 | 
						|
*>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIFR
 | 
						|
*> \verbatim
 | 
						|
*>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | 
						|
*>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
 | 
						|
*>         distances between singular values on the I-th level and
 | 
						|
*>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
 | 
						|
*>         record the normalizing factors of the right singular vectors
 | 
						|
*>         matrices of subproblems on I-th level.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
 | 
						|
*>         On entry, Z(1, I) contains the components of the deflation-
 | 
						|
*>         adjusted updating row vector for subproblems on the I-th
 | 
						|
*>         level.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] POLES
 | 
						|
*> \verbatim
 | 
						|
*>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | 
						|
*>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
 | 
						|
*>         singular values involved in the secular equations on the I-th
 | 
						|
*>         level.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVPTR
 | 
						|
*> \verbatim
 | 
						|
*>          GIVPTR is INTEGER array, dimension ( N ).
 | 
						|
*>         On entry, GIVPTR( I ) records the number of Givens
 | 
						|
*>         rotations performed on the I-th problem on the computation
 | 
						|
*>         tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVCOL
 | 
						|
*> \verbatim
 | 
						|
*>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
 | 
						|
*>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
 | 
						|
*>         locations of Givens rotations performed on the I-th level on
 | 
						|
*>         the computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDGCOL
 | 
						|
*> \verbatim
 | 
						|
*>          LDGCOL is INTEGER, LDGCOL = > N.
 | 
						|
*>         The leading dimension of arrays GIVCOL and PERM.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
 | 
						|
*>         On entry, PERM(*, I) records permutations done on the I-th
 | 
						|
*>         level of the computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVNUM
 | 
						|
*> \verbatim
 | 
						|
*>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
 | 
						|
*>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
 | 
						|
*>         values of Givens rotations performed on the I-th level on the
 | 
						|
*>         computation tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension ( N ).
 | 
						|
*>         On entry, if the I-th subproblem is not square,
 | 
						|
*>         C( I ) contains the C-value of a Givens rotation related to
 | 
						|
*>         the right null space of the I-th subproblem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension ( N ).
 | 
						|
*>         On entry, if the I-th subproblem is not square,
 | 
						|
*>         S( I ) contains the S-value of a Givens rotation related to
 | 
						|
*>         the right null space of the I-th subproblem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2017
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>     Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
 | 
						|
     $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
 | 
						|
     $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
 | 
						|
     $                   SMLSIZ
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | 
						|
     $                   K( * ), PERM( LDGCOL, * )
 | 
						|
      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
 | 
						|
     $                   DIFL( LDU, * ), DIFR( LDU, * ),
 | 
						|
     $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
 | 
						|
     $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
 | 
						|
     $                   Z( LDU, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
 | 
						|
     $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
 | 
						|
     $                   NR, NRF, NRP1, SQRE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( SMLSIZ.LT.3 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.SMLSIZ ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRHS.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDB.LT.N ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDBX.LT.N ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDU.LT.N ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( LDGCOL.LT.N ) THEN
 | 
						|
         INFO = -19
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DLALSA', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Book-keeping and  setting up the computation tree.
 | 
						|
*
 | 
						|
      INODE = 1
 | 
						|
      NDIML = INODE + N
 | 
						|
      NDIMR = NDIML + N
 | 
						|
*
 | 
						|
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
 | 
						|
     $             IWORK( NDIMR ), SMLSIZ )
 | 
						|
*
 | 
						|
*     The following code applies back the left singular vector factors.
 | 
						|
*     For applying back the right singular vector factors, go to 50.
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         GO TO 50
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     The nodes on the bottom level of the tree were solved
 | 
						|
*     by DLASDQ. The corresponding left and right singular vector
 | 
						|
*     matrices are in explicit form. First apply back the left
 | 
						|
*     singular vector matrices.
 | 
						|
*
 | 
						|
      NDB1 = ( ND+1 ) / 2
 | 
						|
      DO 10 I = NDB1, ND
 | 
						|
*
 | 
						|
*        IC : center row of each node
 | 
						|
*        NL : number of rows of left  subproblem
 | 
						|
*        NR : number of rows of right subproblem
 | 
						|
*        NLF: starting row of the left   subproblem
 | 
						|
*        NRF: starting row of the right  subproblem
 | 
						|
*
 | 
						|
         I1 = I - 1
 | 
						|
         IC = IWORK( INODE+I1 )
 | 
						|
         NL = IWORK( NDIML+I1 )
 | 
						|
         NR = IWORK( NDIMR+I1 )
 | 
						|
         NLF = IC - NL
 | 
						|
         NRF = IC + 1
 | 
						|
         CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
 | 
						|
     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
 | 
						|
         CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
 | 
						|
     $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Next copy the rows of B that correspond to unchanged rows
 | 
						|
*     in the bidiagonal matrix to BX.
 | 
						|
*
 | 
						|
      DO 20 I = 1, ND
 | 
						|
         IC = IWORK( INODE+I-1 )
 | 
						|
         CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Finally go through the left singular vector matrices of all
 | 
						|
*     the other subproblems bottom-up on the tree.
 | 
						|
*
 | 
						|
      J = 2**NLVL
 | 
						|
      SQRE = 0
 | 
						|
*
 | 
						|
      DO 40 LVL = NLVL, 1, -1
 | 
						|
         LVL2 = 2*LVL - 1
 | 
						|
*
 | 
						|
*        find the first node LF and last node LL on
 | 
						|
*        the current level LVL
 | 
						|
*
 | 
						|
         IF( LVL.EQ.1 ) THEN
 | 
						|
            LF = 1
 | 
						|
            LL = 1
 | 
						|
         ELSE
 | 
						|
            LF = 2**( LVL-1 )
 | 
						|
            LL = 2*LF - 1
 | 
						|
         END IF
 | 
						|
         DO 30 I = LF, LL
 | 
						|
            IM1 = I - 1
 | 
						|
            IC = IWORK( INODE+IM1 )
 | 
						|
            NL = IWORK( NDIML+IM1 )
 | 
						|
            NR = IWORK( NDIMR+IM1 )
 | 
						|
            NLF = IC - NL
 | 
						|
            NRF = IC + 1
 | 
						|
            J = J - 1
 | 
						|
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
 | 
						|
     $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
 | 
						|
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
 | 
						|
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
 | 
						|
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
 | 
						|
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
 | 
						|
     $                   INFO )
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
      GO TO 90
 | 
						|
*
 | 
						|
*     ICOMPQ = 1: applying back the right singular vector factors.
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
*     First now go through the right singular vector matrices of all
 | 
						|
*     the tree nodes top-down.
 | 
						|
*
 | 
						|
      J = 0
 | 
						|
      DO 70 LVL = 1, NLVL
 | 
						|
         LVL2 = 2*LVL - 1
 | 
						|
*
 | 
						|
*        Find the first node LF and last node LL on
 | 
						|
*        the current level LVL.
 | 
						|
*
 | 
						|
         IF( LVL.EQ.1 ) THEN
 | 
						|
            LF = 1
 | 
						|
            LL = 1
 | 
						|
         ELSE
 | 
						|
            LF = 2**( LVL-1 )
 | 
						|
            LL = 2*LF - 1
 | 
						|
         END IF
 | 
						|
         DO 60 I = LL, LF, -1
 | 
						|
            IM1 = I - 1
 | 
						|
            IC = IWORK( INODE+IM1 )
 | 
						|
            NL = IWORK( NDIML+IM1 )
 | 
						|
            NR = IWORK( NDIMR+IM1 )
 | 
						|
            NLF = IC - NL
 | 
						|
            NRF = IC + 1
 | 
						|
            IF( I.EQ.LL ) THEN
 | 
						|
               SQRE = 0
 | 
						|
            ELSE
 | 
						|
               SQRE = 1
 | 
						|
            END IF
 | 
						|
            J = J + 1
 | 
						|
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
 | 
						|
     $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
 | 
						|
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
 | 
						|
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
 | 
						|
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
 | 
						|
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
 | 
						|
     $                   INFO )
 | 
						|
   60    CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     The nodes on the bottom level of the tree were solved
 | 
						|
*     by DLASDQ. The corresponding right singular vector
 | 
						|
*     matrices are in explicit form. Apply them back.
 | 
						|
*
 | 
						|
      NDB1 = ( ND+1 ) / 2
 | 
						|
      DO 80 I = NDB1, ND
 | 
						|
         I1 = I - 1
 | 
						|
         IC = IWORK( INODE+I1 )
 | 
						|
         NL = IWORK( NDIML+I1 )
 | 
						|
         NR = IWORK( NDIMR+I1 )
 | 
						|
         NLP1 = NL + 1
 | 
						|
         IF( I.EQ.ND ) THEN
 | 
						|
            NRP1 = NR
 | 
						|
         ELSE
 | 
						|
            NRP1 = NR + 1
 | 
						|
         END IF
 | 
						|
         NLF = IC - NL
 | 
						|
         NRF = IC + 1
 | 
						|
         CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
 | 
						|
     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
 | 
						|
         CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
 | 
						|
     $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLALSA
 | 
						|
*
 | 
						|
      END
 |