335 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGQRTS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | |
| *                          BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), RESULT( 4 )
 | |
| *       COMPLEX            A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | |
| *      $                   Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
 | |
| *      $                   T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
 | |
| *      $                   TAUA( * ), TAUB( * ), WORK( LWORK )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGQRTS tests CGGQRF, which computes the GQR factorization of an
 | |
| *> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of columns of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,M)
 | |
| *>          The N-by-M matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX array, dimension (LDA,N)
 | |
| *>          Details of the GQR factorization of A and B, as returned
 | |
| *>          by CGGQRF, see CGGQRF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDA,N)
 | |
| *>          The M-by-M unitary matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] R
 | |
| *> \verbatim
 | |
| *>          R is COMPLEX array, dimension (LDA,MAX(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A, AF, R and Q.
 | |
| *>          LDA >= max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUA
 | |
| *> \verbatim
 | |
| *>          TAUA is COMPLEX array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors, as returned
 | |
| *>          by CGGQRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,P)
 | |
| *>          On entry, the N-by-P matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BF
 | |
| *> \verbatim
 | |
| *>          BF is COMPLEX array, dimension (LDB,N)
 | |
| *>          Details of the GQR factorization of A and B, as returned
 | |
| *>          by CGGQRF, see CGGQRF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDB,P)
 | |
| *>          The P-by-P unitary matrix Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDB,max(P,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWK
 | |
| *> \verbatim
 | |
| *>          BWK is COMPLEX array, dimension (LDB,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the arrays B, BF, Z and T.
 | |
| *>          LDB >= max(P,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUB
 | |
| *> \verbatim
 | |
| *>          TAUB is COMPLEX array, dimension (min(P,N))
 | |
| *>          The scalar factors of the elementary reflectors, as returned
 | |
| *>          by SGGRQF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK, LWORK >= max(N,M,P)**2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(N,M,P))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (4)
 | |
| *>          The test ratios:
 | |
| *>            RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
 | |
| *>            RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
 | |
| *>            RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
 | |
| *>            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | |
|      $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), RESULT( 4 )
 | |
|       COMPLEX            A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | |
|      $                   Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
 | |
|      $                   T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
 | |
|      $                   TAUA( * ), TAUB( * ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
|       COMPLEX            CROGUE
 | |
|       PARAMETER          ( CROGUE = ( -1.0E+10, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO
 | |
|       REAL               ANORM, BNORM, ULP, UNFL, RESID
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, CLANGE, CLANHE
 | |
|       EXTERNAL           SLAMCH, CLANGE, CLANHE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CLACPY, CLASET, CUNGQR,
 | |
|      $                   CUNGRQ, CHERK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
| *
 | |
| *     Copy the matrix A to the array AF.
 | |
| *
 | |
|       CALL CLACPY( 'Full', N, M, A, LDA, AF, LDA )
 | |
|       CALL CLACPY( 'Full', N, P, B, LDB, BF, LDB )
 | |
| *
 | |
|       ANORM = MAX( CLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
 | |
|       BNORM = MAX( CLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
 | |
| *
 | |
| *     Factorize the matrices A and B in the arrays AF and BF.
 | |
| *
 | |
|       CALL CGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
 | |
|      $             LWORK, INFO )
 | |
| *
 | |
| *     Generate the N-by-N matrix Q
 | |
| *
 | |
|       CALL CLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
 | |
|       CALL CLACPY( 'Lower', N-1, M, AF( 2,1 ), LDA, Q( 2,1 ), LDA )
 | |
|       CALL CUNGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Generate the P-by-P matrix Z
 | |
| *
 | |
|       CALL CLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
 | |
|       IF( N.LE.P ) THEN
 | |
|          IF( N.GT.0 .AND. N.LT.P )
 | |
|      $      CALL CLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
 | |
|          IF( N.GT.1 )
 | |
|      $      CALL CLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
 | |
|      $                    Z( P-N+2, P-N+1 ), LDB )
 | |
|       ELSE
 | |
|          IF( P.GT.1)
 | |
|      $      CALL CLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
 | |
|      $                    Z( 2, 1 ), LDB )
 | |
|       END IF
 | |
|       CALL CUNGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Copy R
 | |
| *
 | |
|       CALL CLASET( 'Full', N, M, CZERO, CZERO, R, LDA )
 | |
|       CALL CLACPY( 'Upper', N, M, AF, LDA, R, LDA )
 | |
| *
 | |
| *     Copy T
 | |
| *
 | |
|       CALL CLASET( 'Full', N, P, CZERO, CZERO, T, LDB )
 | |
|       IF( N.LE.P ) THEN
 | |
|          CALL CLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
 | |
|      $                LDB )
 | |
|       ELSE
 | |
|          CALL CLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
 | |
|          CALL CLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
 | |
|      $                LDB )
 | |
|       END IF
 | |
| *
 | |
| *     Compute R - Q'*A
 | |
| *
 | |
|       CALL CGEMM( 'Conjugate transpose', 'No transpose', N, M, N, -CONE,
 | |
|      $            Q, LDA, A, LDA, CONE, R, LDA )
 | |
| *
 | |
| *     Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
 | |
| *
 | |
|       RESID = CLANGE( '1', N, M, R, LDA, RWORK )
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
|          RESULT( 1 ) = ( ( RESID / REAL( MAX(1,M,N) ) ) / ANORM ) / ULP
 | |
|       ELSE
 | |
|          RESULT( 1 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute T*Z - Q'*B
 | |
| *
 | |
|       CALL CGEMM( 'No Transpose', 'No transpose', N, P, P, CONE, T, LDB,
 | |
|      $            Z, LDB, CZERO, BWK, LDB )
 | |
|       CALL CGEMM( 'Conjugate transpose', 'No transpose', N, P, N, -CONE,
 | |
|      $            Q, LDA, B, LDB, CONE, BWK, LDB )
 | |
| *
 | |
| *     Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
 | |
| *
 | |
|       RESID = CLANGE( '1', N, P, BWK, LDB, RWORK )
 | |
|       IF( BNORM.GT.ZERO ) THEN
 | |
|          RESULT( 2 ) = ( ( RESID / REAL( MAX(1,P,N ) ) )/BNORM ) / ULP
 | |
|       ELSE
 | |
|          RESULT( 2 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute I - Q'*Q
 | |
| *
 | |
|       CALL CLASET( 'Full', N, N, CZERO, CONE, R, LDA )
 | |
|       CALL CHERK( 'Upper', 'Conjugate transpose', N, N, -ONE, Q, LDA,
 | |
|      $            ONE, R, LDA )
 | |
| *
 | |
| *     Compute norm( I - Q'*Q ) / ( N * ULP ) .
 | |
| *
 | |
|       RESID = CLANHE( '1', 'Upper', N, R, LDA, RWORK )
 | |
|       RESULT( 3 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
 | |
| *
 | |
| *     Compute I - Z'*Z
 | |
| *
 | |
|       CALL CLASET( 'Full', P, P, CZERO, CONE, T, LDB )
 | |
|       CALL CHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
 | |
|      $            ONE, T, LDB )
 | |
| *
 | |
| *     Compute norm( I - Z'*Z ) / ( P*ULP ) .
 | |
| *
 | |
|       RESID = CLANHE( '1', 'Upper', P, T, LDB, RWORK )
 | |
|       RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGQRTS
 | |
| *
 | |
|       END
 |