OpenBLAS/interface/gemm.c

652 lines
19 KiB
C

/*********************************************************************/
/* Copyright 2024 The OpenBLAS Project */
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#ifdef FUNCTION_PROFILE
#include "functable.h"
#endif
#ifndef COMPLEX
#define SMP_THRESHOLD_MIN 65536.0
#ifdef XDOUBLE
#define ERROR_NAME "QGEMM "
#define GEMV BLASFUNC(qgemv)
#elif defined(DOUBLE)
#define ERROR_NAME "DGEMM "
#define GEMV BLASFUNC(dgemv)
#elif defined(BFLOAT16)
#define ERROR_NAME "SBGEMM "
#define GEMV BLASFUNC(sbgemv)
#else
#define ERROR_NAME "SGEMM "
#define GEMV BLASFUNC(sgemv)
#endif
#else
#define SMP_THRESHOLD_MIN 8192.0
#ifndef GEMM3M
#ifdef XDOUBLE
#define ERROR_NAME "XGEMM "
#elif defined(DOUBLE)
#define ERROR_NAME "ZGEMM "
#else
#define ERROR_NAME "CGEMM "
#endif
#else
#ifdef XDOUBLE
#define ERROR_NAME "XGEMM3M "
#elif defined(DOUBLE)
#define ERROR_NAME "ZGEMM3M "
#else
#define ERROR_NAME "CGEMM3M "
#endif
#endif
#endif
#ifndef GEMM_MULTITHREAD_THRESHOLD
#define GEMM_MULTITHREAD_THRESHOLD 4
#endif
static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, IFLOAT *, IFLOAT *, BLASLONG) = {
#ifndef GEMM3M
GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN,
GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT,
GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR,
GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC,
#if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN,
GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT,
GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR,
GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC,
#endif
#else
GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN,
GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT,
GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR,
GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC,
#if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN,
GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT,
GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR,
GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC,
#endif
#endif
};
#if defined(SMALL_MATRIX_OPT) && !defined(GEMM3M) && !defined(XDOUBLE)
#define USE_SMALL_MATRIX_OPT 1
#else
#define USE_SMALL_MATRIX_OPT 0
#endif
#if USE_SMALL_MATRIX_OPT
#ifndef DYNAMIC_ARCH
#define SMALL_KERNEL_ADDR(table, idx) ((void *)(table[idx]))
#else
#define SMALL_KERNEL_ADDR(table, idx) ((void *)(*(uintptr_t *)((char *)gotoblas + (size_t)(table[idx]))))
#endif
#ifndef COMPLEX
static size_t gemm_small_kernel[] = {
GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, 0, 0,
GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, 0, 0,
};
static size_t gemm_small_kernel_b0[] = {
GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, 0, 0,
GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, 0, 0,
};
#define GEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel_b0, (idx))
#define GEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel, (idx))
#else
static size_t zgemm_small_kernel[] = {
GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, GEMM_SMALL_KERNEL_RN, GEMM_SMALL_KERNEL_CN,
GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, GEMM_SMALL_KERNEL_RT, GEMM_SMALL_KERNEL_CT,
GEMM_SMALL_KERNEL_NR, GEMM_SMALL_KERNEL_TR, GEMM_SMALL_KERNEL_RR, GEMM_SMALL_KERNEL_CR,
GEMM_SMALL_KERNEL_NC, GEMM_SMALL_KERNEL_TC, GEMM_SMALL_KERNEL_RC, GEMM_SMALL_KERNEL_CC,
};
static size_t zgemm_small_kernel_b0[] = {
GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, GEMM_SMALL_KERNEL_B0_RN, GEMM_SMALL_KERNEL_B0_CN,
GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, GEMM_SMALL_KERNEL_B0_RT, GEMM_SMALL_KERNEL_B0_CT,
GEMM_SMALL_KERNEL_B0_NR, GEMM_SMALL_KERNEL_B0_TR, GEMM_SMALL_KERNEL_B0_RR, GEMM_SMALL_KERNEL_B0_CR,
GEMM_SMALL_KERNEL_B0_NC, GEMM_SMALL_KERNEL_B0_TC, GEMM_SMALL_KERNEL_B0_RC, GEMM_SMALL_KERNEL_B0_CC,
};
#define ZGEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel, (idx))
#define ZGEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel_b0, (idx))
#endif
#endif
#if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
#define XFEATURE_XTILEDATA 18
#define ARCH_REQ_XCOMP_PERM 0x1023
static int openblas_amxtile_permission = 0;
static int init_amxtile_permission() {
long status =
syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA);
if (status != 0) {
fprintf(stderr, "XTILEDATA permission not granted in your device(Linux, "
"Intel Sapphier Rapids), skip sbgemm calculation\n");
return -1;
}
openblas_amxtile_permission = 1;
return 0;
}
#endif
#ifndef CBLAS
void NAME(char *TRANSA, char *TRANSB,
blasint *M, blasint *N, blasint *K,
FLOAT *alpha,
IFLOAT *a, blasint *ldA,
IFLOAT *b, blasint *ldB,
FLOAT *beta,
FLOAT *c, blasint *ldC){
blas_arg_t args;
int transa, transb, nrowa, nrowb;
blasint info;
char transA, transB;
IFLOAT *buffer;
IFLOAT *sa, *sb;
#ifdef SMP
double MNK;
#if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
#endif
#if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
int nodes;
#endif
PRINT_DEBUG_NAME;
args.m = *M;
args.n = *N;
args.k = *K;
args.a = (void *)a;
args.b = (void *)b;
args.c = (void *)c;
args.lda = *ldA;
args.ldb = *ldB;
args.ldc = *ldC;
args.alpha = (void *)alpha;
args.beta = (void *)beta;
transA = *TRANSA;
transB = *TRANSB;
TOUPPER(transA);
TOUPPER(transB);
transa = -1;
transb = -1;
if (transA == 'N') transa = 0;
if (transA == 'T') transa = 1;
#ifndef COMPLEX
if (transA == 'R') transa = 0;
if (transA == 'C') transa = 1;
#else
if (transA == 'R') transa = 2;
if (transA == 'C') transa = 3;
#endif
if (transB == 'N') transb = 0;
if (transB == 'T') transb = 1;
#ifndef COMPLEX
if (transB == 'R') transb = 0;
if (transB == 'C') transb = 1;
#else
if (transB == 'R') transb = 2;
if (transB == 'C') transb = 3;
#endif
nrowa = args.m;
if (transa & 1) nrowa = args.k;
nrowb = args.k;
if (transb & 1) nrowb = args.n;
info = 0;
if (args.ldc < args.m) info = 13;
if (args.ldb < nrowb) info = 10;
if (args.lda < nrowa) info = 8;
if (args.k < 0) info = 5;
if (args.n < 0) info = 4;
if (args.m < 0) info = 3;
if (transb < 0) info = 2;
if (transa < 0) info = 1;
if (info){
BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
return;
}
#else
void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB,
blasint m, blasint n, blasint k,
#ifndef COMPLEX
FLOAT alpha,
IFLOAT *a, blasint lda,
IFLOAT *b, blasint ldb,
FLOAT beta,
FLOAT *c, blasint ldc) {
#else
void *valpha,
void *va, blasint lda,
void *vb, blasint ldb,
void *vbeta,
void *vc, blasint ldc) {
FLOAT *alpha = (FLOAT*) valpha;
FLOAT *beta = (FLOAT*) vbeta;
FLOAT *a = (FLOAT*) va;
FLOAT *b = (FLOAT*) vb;
FLOAT *c = (FLOAT*) vc;
#endif
blas_arg_t args;
int transa, transb;
blasint nrowa, nrowb, info;
XFLOAT *buffer;
XFLOAT *sa, *sb;
#ifdef SMP
double MNK;
#if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
#endif
#if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
int nodes;
#endif
PRINT_DEBUG_CNAME;
#if !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && defined(USE_SGEMM_KERNEL_DIRECT)
#ifdef DYNAMIC_ARCH
if (support_avx512() )
#endif
if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && SGEMM_DIRECT_PERFORMANT(m,n,k)) {
SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
return;
}
#endif
#ifndef COMPLEX
args.alpha = (void *)&alpha;
args.beta = (void *)&beta;
#else
args.alpha = (void *)alpha;
args.beta = (void *)beta;
#endif
transa = -1;
transb = -1;
info = 0;
if (order == CblasColMajor) {
args.m = m;
args.n = n;
args.k = k;
args.a = (void *)a;
args.b = (void *)b;
args.c = (void *)c;
args.lda = lda;
args.ldb = ldb;
args.ldc = ldc;
if (TransA == CblasNoTrans) transa = 0;
if (TransA == CblasTrans) transa = 1;
#ifndef COMPLEX
if (TransA == CblasConjNoTrans) transa = 0;
if (TransA == CblasConjTrans) transa = 1;
#else
if (TransA == CblasConjNoTrans) transa = 2;
if (TransA == CblasConjTrans) transa = 3;
#endif
if (TransB == CblasNoTrans) transb = 0;
if (TransB == CblasTrans) transb = 1;
#ifndef COMPLEX
if (TransB == CblasConjNoTrans) transb = 0;
if (TransB == CblasConjTrans) transb = 1;
#else
if (TransB == CblasConjNoTrans) transb = 2;
if (TransB == CblasConjTrans) transb = 3;
#endif
nrowa = args.m;
if (transa & 1) nrowa = args.k;
nrowb = args.k;
if (transb & 1) nrowb = args.n;
info = -1;
if (args.ldc < args.m) info = 13;
if (args.ldb < nrowb) info = 10;
if (args.lda < nrowa) info = 8;
if (args.k < 0) info = 5;
if (args.n < 0) info = 4;
if (args.m < 0) info = 3;
if (transb < 0) info = 2;
if (transa < 0) info = 1;
}
if (order == CblasRowMajor) {
args.m = n;
args.n = m;
args.k = k;
args.a = (void *)b;
args.b = (void *)a;
args.c = (void *)c;
args.lda = ldb;
args.ldb = lda;
args.ldc = ldc;
if (TransB == CblasNoTrans) transa = 0;
if (TransB == CblasTrans) transa = 1;
#ifndef COMPLEX
if (TransB == CblasConjNoTrans) transa = 0;
if (TransB == CblasConjTrans) transa = 1;
#else
if (TransB == CblasConjNoTrans) transa = 2;
if (TransB == CblasConjTrans) transa = 3;
#endif
if (TransA == CblasNoTrans) transb = 0;
if (TransA == CblasTrans) transb = 1;
#ifndef COMPLEX
if (TransA == CblasConjNoTrans) transb = 0;
if (TransA == CblasConjTrans) transb = 1;
#else
if (TransA == CblasConjNoTrans) transb = 2;
if (TransA == CblasConjTrans) transb = 3;
#endif
nrowa = args.m;
if (transa & 1) nrowa = args.k;
nrowb = args.k;
if (transb & 1) nrowb = args.n;
info = -1;
if (args.ldc < args.m) info = 13;
if (args.ldb < nrowb) info = 10;
if (args.lda < nrowa) info = 8;
if (args.k < 0) info = 5;
if (args.n < 0) info = 4;
if (args.m < 0) info = 3;
if (transb < 0) info = 2;
if (transa < 0) info = 1;
}
if (info >= 0) {
BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
return;
}
#endif
#if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
#if defined(DYNAMIC_ARCH)
if (gotoblas->need_amxtile_permission &&
openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
return;
}
#endif
#if !defined(DYNAMIC_ARCH) && defined(SAPPHIRERAPIDS)
if (openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
return;
}
#endif
#endif // defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
if ((args.m == 0) || (args.n == 0)) return;
#if 0
fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n",
args.m, args.n, args.k, args.lda, args.ldb, args.ldc);
#endif
#if defined(GEMM_GEMV_FORWARD) && !defined(GEMM3M) && !defined(COMPLEX) && !defined(BFLOAT16)
// Check if we can convert GEMM -> GEMV
if (args.k != 0) {
if (args.n == 1) {
blasint inc_x = 1;
blasint inc_y = 1;
// These were passed in as blasint, but the struct translates them to blaslong
blasint m = args.m;
blasint n = args.k;
blasint lda = args.lda;
// Create new transpose parameters
char NT = 'N';
if (transa & 1) {
NT = 'T';
m = args.k;
n = args.m;
}
if (transb & 1) {
inc_x = args.ldb;
}
GEMV(&NT, &m, &n, args.alpha, args.a, &lda, args.b, &inc_x, args.beta, args.c, &inc_y);
return;
}
if (args.m == 1) {
blasint inc_x = args.lda;
blasint inc_y = args.ldc;
// These were passed in as blasint, but the struct translates them to blaslong
blasint m = args.k;
blasint n = args.n;
blasint ldb = args.ldb;
// Create new transpose parameters
char NT = 'T';
if (transa & 1) {
inc_x = 1;
}
if (transb & 1) {
NT = 'N';
m = args.n;
n = args.k;
}
GEMV(&NT, &m, &n, args.alpha, args.b, &ldb, args.a, &inc_x, args.beta, args.c, &inc_y);
return;
}
}
#endif
IDEBUG_START;
FUNCTION_PROFILE_START();
#if USE_SMALL_MATRIX_OPT
#if !defined(COMPLEX)
if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, *(FLOAT *)(args.alpha), *(FLOAT *)(args.beta))){
if(*(FLOAT *)(args.beta) == 0.0){
(GEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, args.c, args.ldc);
}else{
(GEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, *(FLOAT *)(args.beta), args.c, args.ldc);
}
return;
}
#else
if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, alpha[0], alpha[1], beta[0], beta[1])){
if(beta[0] == 0.0 && beta[1] == 0.0){
(ZGEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, args.c, args.ldc);
}else{
(ZGEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, beta[0], beta[1], args.c, args.ldc);
}
return;
}
#endif
#endif
buffer = (XFLOAT *)blas_memory_alloc(0);
//For LOONGARCH64, applying an offset to the buffer is essential
//for minimizing cache conflicts and optimizing performance.
#if defined(ARCH_LOONGARCH64) && !defined(NO_AFFINITY)
sa = (XFLOAT *)((BLASLONG)buffer + (WhereAmI() & 0xf) * GEMM_OFFSET_A);
#else
sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A);
#endif
sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
#ifdef SMP
#if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
mode |= (transa << BLAS_TRANSA_SHIFT);
mode |= (transb << BLAS_TRANSB_SHIFT);
#endif
MNK = (double) args.m * (double) args.n * (double) args.k;
if ( MNK <= (SMP_THRESHOLD_MIN * (double) GEMM_MULTITHREAD_THRESHOLD) )
args.nthreads = 1;
else {
args.nthreads = num_cpu_avail(3);
if (MNK/args.nthreads < SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD)
args.nthreads = MNK/(SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD);
}
args.common = NULL;
if (args.nthreads == 1) {
#endif
(gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
#ifdef SMP
} else {
#ifndef USE_SIMPLE_THREADED_LEVEL3
#ifndef NO_AFFINITY
nodes = get_num_nodes();
if ((nodes > 1) && get_node_equal()) {
args.nthreads /= nodes;
gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes);
} else {
#endif
(gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
#else
GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads);
#endif
#ifndef USE_SIMPLE_THREADED_LEVEL3
#ifndef NO_AFFINITY
}
#endif
#endif
#endif
#ifdef SMP
}
#endif
blas_memory_free(buffer);
FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k);
IDEBUG_END;
return;
}