316 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGET22
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
 | |
| *                          WORK, RWORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSA, TRANSE, TRANSW
 | |
| *       INTEGER            LDA, LDE, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RESULT( 2 ), RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGET22 does an eigenvector check.
 | |
| *>
 | |
| *> The basic test is:
 | |
| *>
 | |
| *>    RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | |
| *>
 | |
| *> using the 1-norm.  It also tests the normalization of E:
 | |
| *>
 | |
| *>    RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | |
| *>                 j
 | |
| *>
 | |
| *> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
 | |
| *> vector.  The max-norm of a complex n-vector x in this case is the
 | |
| *> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSA
 | |
| *> \verbatim
 | |
| *>          TRANSA is CHARACTER*1
 | |
| *>          Specifies whether or not A is transposed.
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose
 | |
| *>          = 'C':  Conjugate transpose
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSE
 | |
| *> \verbatim
 | |
| *>          TRANSE is CHARACTER*1
 | |
| *>          Specifies whether or not E is transposed.
 | |
| *>          = 'N':  No transpose, eigenvectors are in columns of E
 | |
| *>          = 'T':  Transpose, eigenvectors are in rows of E
 | |
| *>          = 'C':  Conjugate transpose, eigenvectors are in rows of E
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSW
 | |
| *> \verbatim
 | |
| *>          TRANSW is CHARACTER*1
 | |
| *>          Specifies whether or not W is transposed.
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose, same as TRANSW = 'N'
 | |
| *>          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The matrix whose eigenvectors are in E.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (LDE,N)
 | |
| *>          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
 | |
| *>          are stored in the columns of E, if TRANSE = 'T' or 'C', the
 | |
| *>          eigenvectors are stored in the rows of E.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of the array E.  LDE >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX array, dimension (N)
 | |
| *>          The eigenvalues of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (2)
 | |
| *>          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | |
| *>          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | |
| *>                       j
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
 | |
|      $                   WORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSA, TRANSE, TRANSW
 | |
|       INTEGER            LDA, LDE, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RESULT( 2 ), RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          NORMA, NORME
 | |
|       INTEGER            ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
 | |
|       REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
 | |
|      $                   ULP, UNFL
 | |
|       COMPLEX            WTEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           LSAME, CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CLASET
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CONJG, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Initialize RESULT (in case N=0)
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
| *
 | |
|       ITRNSE = 0
 | |
|       ITRNSW = 0
 | |
|       NORMA = 'O'
 | |
|       NORME = 'O'
 | |
| *
 | |
|       IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
 | |
|          NORMA = 'I'
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( TRANSE, 'T' ) ) THEN
 | |
|          ITRNSE = 1
 | |
|          NORME = 'I'
 | |
|       ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
 | |
|          ITRNSE = 2
 | |
|          NORME = 'I'
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( TRANSW, 'C' ) ) THEN
 | |
|          ITRNSW = 1
 | |
|       END IF
 | |
| *
 | |
| *     Normalization of E:
 | |
| *
 | |
|       ENRMIN = ONE / ULP
 | |
|       ENRMAX = ZERO
 | |
|       IF( ITRNSE.EQ.0 ) THEN
 | |
|          DO 20 JVEC = 1, N
 | |
|             TEMP1 = ZERO
 | |
|             DO 10 J = 1, N
 | |
|                TEMP1 = MAX( TEMP1, ABS( REAL( E( J, JVEC ) ) )+
 | |
|      $                 ABS( AIMAG( E( J, JVEC ) ) ) )
 | |
|    10       CONTINUE
 | |
|             ENRMIN = MIN( ENRMIN, TEMP1 )
 | |
|             ENRMAX = MAX( ENRMAX, TEMP1 )
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
|          DO 30 JVEC = 1, N
 | |
|             RWORK( JVEC ) = ZERO
 | |
|    30    CONTINUE
 | |
| *
 | |
|          DO 50 J = 1, N
 | |
|             DO 40 JVEC = 1, N
 | |
|                RWORK( JVEC ) = MAX( RWORK( JVEC ),
 | |
|      $                         ABS( REAL( E( JVEC, J ) ) )+
 | |
|      $                         ABS( AIMAG( E( JVEC, J ) ) ) )
 | |
|    40       CONTINUE
 | |
|    50    CONTINUE
 | |
| *
 | |
|          DO 60 JVEC = 1, N
 | |
|             ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
 | |
|             ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
 | |
|    60    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Norm of A:
 | |
| *
 | |
|       ANORM = MAX( CLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
 | |
| *
 | |
| *     Norm of E:
 | |
| *
 | |
|       ENORM = MAX( CLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
 | |
| *
 | |
| *     Norm of error:
 | |
| *
 | |
| *     Error =  AE - EW
 | |
| *
 | |
|       CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
 | |
| *
 | |
|       JOFF = 0
 | |
|       DO 100 JCOL = 1, N
 | |
|          IF( ITRNSW.EQ.0 ) THEN
 | |
|             WTEMP = W( JCOL )
 | |
|          ELSE
 | |
|             WTEMP = CONJG( W( JCOL ) )
 | |
|          END IF
 | |
| *
 | |
|          IF( ITRNSE.EQ.0 ) THEN
 | |
|             DO 70 JROW = 1, N
 | |
|                WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
 | |
|    70       CONTINUE
 | |
|          ELSE IF( ITRNSE.EQ.1 ) THEN
 | |
|             DO 80 JROW = 1, N
 | |
|                WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
 | |
|    80       CONTINUE
 | |
|          ELSE
 | |
|             DO 90 JROW = 1, N
 | |
|                WORK( JOFF+JROW ) = CONJG( E( JCOL, JROW ) )*WTEMP
 | |
|    90       CONTINUE
 | |
|          END IF
 | |
|          JOFF = JOFF + N
 | |
|   100 CONTINUE
 | |
| *
 | |
|       CALL CGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
 | |
|      $            WORK, N )
 | |
| *
 | |
|       ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
 | |
| *
 | |
| *     Compute RESULT(1) (avoiding under/overflow)
 | |
| *
 | |
|       IF( ANORM.GT.ERRNRM ) THEN
 | |
|          RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ONE / ULP
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute RESULT(2) : the normalization error in E.
 | |
| *
 | |
|       RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
 | |
|      $              ( REAL( N )*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGET22
 | |
| *
 | |
|       END
 |