1571 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1571 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLANHF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM, TRANSR, UPLO
 | |
| *       INTEGER            N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   WORK( 0: * )
 | |
| *       COMPLEX*16         A( 0: * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLANHF  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> complex Hermitian matrix A in RFP format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return ZLANHF
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER
 | |
| *>            Specifies the value to be returned in ZLANHF as described
 | |
| *>            above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER
 | |
| *>            Specifies whether the RFP format of A is normal or
 | |
| *>            conjugate-transposed format.
 | |
| *>            = 'N':  RFP format is Normal
 | |
| *>            = 'C':  RFP format is Conjugate-transposed
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER
 | |
| *>            On entry, UPLO specifies whether the RFP matrix A came from
 | |
| *>            an upper or lower triangular matrix as follows:
 | |
| *>
 | |
| *>            UPLO = 'U' or 'u' RFP A came from an upper triangular
 | |
| *>            matrix
 | |
| *>
 | |
| *>            UPLO = 'L' or 'l' RFP A came from a  lower triangular
 | |
| *>            matrix
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>            The order of the matrix A.  N >= 0.  When N = 0, ZLANHF is
 | |
| *>            set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
 | |
| *>            On entry, the matrix A in RFP Format.
 | |
| *>            RFP Format is described by TRANSR, UPLO and N as follows:
 | |
| *>            If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
 | |
| *>            K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
 | |
| *>            TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A
 | |
| *>            as defined when TRANSR = 'N'. The contents of RFP A are
 | |
| *>            defined by UPLO as follows: If UPLO = 'U' the RFP A
 | |
| *>            contains the ( N*(N+1)/2 ) elements of upper packed A
 | |
| *>            either in normal or conjugate-transpose Format. If
 | |
| *>            UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements
 | |
| *>            of lower packed A either in normal or conjugate-transpose
 | |
| *>            Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When
 | |
| *>            TRANSR is 'N' the LDA is N+1 when N is even and is N when
 | |
| *>            is odd. See the Note below for more details.
 | |
| *>            Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK),
 | |
| *>            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | |
| *>            WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Standard Packed Format when N is even.
 | |
| *>  We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  conjugate-transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  conjugate-transpose of the last three columns of AP lower.
 | |
| *>  To denote conjugate we place -- above the element. This covers the
 | |
| *>  case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>                                -- -- --
 | |
| *>        03 04 05                33 43 53
 | |
| *>                                   -- --
 | |
| *>        13 14 15                00 44 54
 | |
| *>                                      --
 | |
| *>        23 24 25                10 11 55
 | |
| *>
 | |
| *>        33 34 35                20 21 22
 | |
| *>        --
 | |
| *>        00 44 45                30 31 32
 | |
| *>        -- --
 | |
| *>        01 11 55                40 41 42
 | |
| *>        -- -- --
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     -- -- -- --                -- -- -- -- -- --
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     -- -- -- -- --                -- -- -- -- --
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     -- -- -- -- -- --                -- -- -- --
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We next  consider Standard Packed Format when N is odd.
 | |
| *>  We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  conjugate-transpose of the first two   columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  conjugate-transpose of the last two   columns of AP lower.
 | |
| *>  To denote conjugate we place -- above the element. This covers the
 | |
| *>  case N odd  and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>                                   -- --
 | |
| *>        02 03 04                00 33 43
 | |
| *>                                      --
 | |
| *>        12 13 14                10 11 44
 | |
| *>
 | |
| *>        22 23 24                20 21 22
 | |
| *>        --
 | |
| *>        00 33 34                30 31 32
 | |
| *>        -- --
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     -- -- --                   -- -- -- -- -- --
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     -- -- -- --                   -- -- -- -- --
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     -- -- -- -- --                   -- -- -- --
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM, TRANSR, UPLO
 | |
|       INTEGER            N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   WORK( 0: * )
 | |
|       COMPLEX*16         A( 0: * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, IFM, ILU, NOE, N1, K, L, LDA
 | |
|       DOUBLE PRECISION   SCALE, S, VALUE, AA, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          ZLANHF = ZERO
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
|          ZLANHF = ABS(DBLE(A(0)))
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     set noe = 1 if n is odd. if n is even set noe=0
 | |
| *
 | |
|       NOE = 1
 | |
|       IF( MOD( N, 2 ).EQ.0 )
 | |
|      $   NOE = 0
 | |
| *
 | |
| *     set ifm = 0 when form='C' or 'c' and 1 otherwise
 | |
| *
 | |
|       IFM = 1
 | |
|       IF( LSAME( TRANSR, 'C' ) )
 | |
|      $   IFM = 0
 | |
| *
 | |
| *     set ilu = 0 when uplo='U or 'u' and 1 otherwise
 | |
| *
 | |
|       ILU = 1
 | |
|       IF( LSAME( UPLO, 'U' ) )
 | |
|      $   ILU = 0
 | |
| *
 | |
| *     set lda = (n+1)/2 when ifm = 0
 | |
| *     set lda = n when ifm = 1 and noe = 1
 | |
| *     set lda = n+1 when ifm = 1 and noe = 0
 | |
| *
 | |
|       IF( IFM.EQ.1 ) THEN
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
|             LDA = N
 | |
|          ELSE
 | |
| *           noe=0
 | |
|             LDA = N + 1
 | |
|          END IF
 | |
|       ELSE
 | |
| *        ifm=0
 | |
|          LDA = ( N+1 ) / 2
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *       Find max(abs(A(i,j))).
 | |
| *
 | |
|          K = ( N+1 ) / 2
 | |
|          VALUE = ZERO
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
| *           n is odd & n = k + k - 1
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is n by k
 | |
|                IF( ILU.EQ.1 ) THEN
 | |
| *                 uplo ='L'
 | |
|                   J = 0
 | |
| *                 -> L(0,0)
 | |
|                   TEMP = ABS( DBLE( A( J+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                   DO I = 1, N - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   DO J = 1, K - 1
 | |
|                      DO I = 0, J - 2
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J - 1
 | |
| *                    L(k+j,k+j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J
 | |
| *                    -> L(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J + 1, N - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 uplo = 'U'
 | |
|                   DO J = 0, K - 2
 | |
|                      DO I = 0, K + J - 2
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = K + J - 1
 | |
| *                    -> U(i,i)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = I + 1
 | |
| *                    =k+j; i -> U(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = K + J + 1, N - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   DO I = 0, N - 2
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
| *                    j=k-1
 | |
|                   END DO
 | |
| *                 i=n-1 -> U(n-1,n-1)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                END IF
 | |
|             ELSE
 | |
| *              xpose case; A is k by n
 | |
|                IF( ILU.EQ.1 ) THEN
 | |
| *                 uplo ='L'
 | |
|                   DO J = 0, K - 2
 | |
|                      DO I = 0, J - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J
 | |
| *                    L(i,i)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J + 1
 | |
| *                    L(j+k,j+k)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J + 2, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   J = K - 1
 | |
|                   DO I = 0, K - 2
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   I = K - 1
 | |
| *                 -> L(i,i) is at A(i,j)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   DO J = K, N - 1
 | |
|                      DO I = 0, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 uplo = 'U'
 | |
|                   DO J = 0, K - 2
 | |
|                      DO I = 0, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   J = K - 1
 | |
| *                 -> U(j,j) is at A(0,j)
 | |
|                   TEMP = ABS( DBLE( A( 0+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   DO I = 1, K - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   DO J = K, N - 1
 | |
|                      DO I = 0, J - K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J - K
 | |
| *                    -> U(i,i) at A(i,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J - K + 1
 | |
| *                    U(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J - K + 2, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *           n is even & k = n/2
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is n+1 by k
 | |
|                IF( ILU.EQ.1 ) THEN
 | |
| *                 uplo ='L'
 | |
|                   J = 0
 | |
| *                 -> L(k,k) & j=1 -> L(0,0)
 | |
|                   TEMP = ABS( DBLE( A( J+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                   TEMP = ABS( DBLE( A( J+1+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                   DO I = 2, N
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   DO J = 1, K - 1
 | |
|                      DO I = 0, J - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J
 | |
| *                    L(k+j,k+j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J + 1
 | |
| *                    -> L(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J + 2, N
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 uplo = 'U'
 | |
|                   DO J = 0, K - 2
 | |
|                      DO I = 0, K + J - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = K + J
 | |
| *                    -> U(i,i)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = I + 1
 | |
| *                    =k+j+1; i -> U(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = K + J + 2, N
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   DO I = 0, N - 2
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
| *                    j=k-1
 | |
|                   END DO
 | |
| *                 i=n-1 -> U(n-1,n-1)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   I = N
 | |
| *                 -> U(k-1,k-1)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                END IF
 | |
|             ELSE
 | |
| *              xpose case; A is k by n+1
 | |
|                IF( ILU.EQ.1 ) THEN
 | |
| *                 uplo ='L'
 | |
|                   J = 0
 | |
| *                 -> L(k,k) at A(0,0)
 | |
|                   TEMP = ABS( DBLE( A( J+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   DO I = 1, K - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   DO J = 1, K - 1
 | |
|                      DO I = 0, J - 2
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J - 1
 | |
| *                    L(i,i)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J
 | |
| *                    L(j+k,j+k)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J + 1, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   J = K
 | |
|                   DO I = 0, K - 2
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   I = K - 1
 | |
| *                 -> L(i,i) is at A(i,j)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                   DO J = K + 1, N
 | |
|                      DO I = 0, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 uplo = 'U'
 | |
|                   DO J = 0, K - 1
 | |
|                      DO I = 0, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   J = K
 | |
| *                 -> U(j,j) is at A(0,j)
 | |
|                   TEMP = ABS( DBLE( A( 0+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                   DO I = 1, K - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   DO J = K + 1, N - 1
 | |
|                      DO I = 0, J - K - 2
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                      I = J - K - 1
 | |
| *                    -> U(i,i) at A(i,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      I = J - K
 | |
| *                    U(j,j)
 | |
|                      TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                      DO I = J - K + 1, K - 1
 | |
|                         TEMP = ABS( A( I+J*LDA ) )
 | |
|                         IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                       VALUE = TEMP
 | |
|                      END DO
 | |
|                   END DO
 | |
|                   J = N
 | |
|                   DO I = 0, K - 2
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                   I = K - 1
 | |
| *                 U(k,k) at A(i,j)
 | |
|                   TEMP = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                   IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                 VALUE = TEMP
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | |
|      $         ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *       Find normI(A) ( = norm1(A), since A is Hermitian).
 | |
| *
 | |
|          IF( IFM.EQ.1 ) THEN
 | |
| *           A is 'N'
 | |
|             K = N / 2
 | |
|             IF( NOE.EQ.1 ) THEN
 | |
| *              n is odd & A is n by (n+1)/2
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 uplo = 'U'
 | |
|                   DO I = 0, K - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K + J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(i,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      WORK( J+K ) = S + AA
 | |
|                      IF( I.EQ.K+K )
 | |
|      $                  GO TO 10
 | |
|                      I = I + 1
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = WORK( J ) + AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, K - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|    10             CONTINUE
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu = 1 & uplo = 'L'
 | |
|                   K = K + 1
 | |
| *                 k=(n+1)/2 for n odd and ilu=1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = K - 1, 0, -1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(j+k,i+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      END DO
 | |
|                      IF( J.GT.0 ) THEN
 | |
|                         AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                       -> A(j+k,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + S
 | |
| *                       i=j
 | |
|                         I = I + 1
 | |
|                      END IF
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              n is even & A is n+1 by k = n/2
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 uplo = 'U'
 | |
|                   DO I = 0, K - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K + J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(i,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      WORK( J+K ) = S + AA
 | |
|                      I = I + 1
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = WORK( J ) + AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, K - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu = 1 & uplo = 'L'
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = K - 1, 0, -1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(j+k,i+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      S = S + AA
 | |
|                      WORK( I+K ) = WORK( I+K ) + S
 | |
| *                    i=j
 | |
|                      I = I + 1
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *           ifm=0
 | |
|             K = N / 2
 | |
|             IF( NOE.EQ.1 ) THEN
 | |
| *              n is odd & A is (n+1)/2 by n
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 uplo = 'U'
 | |
|                   N1 = K
 | |
| *                 n/2
 | |
|                   K = K + 1
 | |
| *                 k is the row size and lda
 | |
|                   DO I = N1, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, N1 - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,n1+i)
 | |
|                         WORK( I+N1 ) = WORK( I+N1 ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = S
 | |
|                   END DO
 | |
| *                 j=n1=k-1 is special
 | |
|                   S = ABS( DBLE( A( 0+J*LDA ) ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k-1,i+n1)
 | |
|                      WORK( I+N1 ) = WORK( I+N1 ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( J ) = WORK( J ) + S
 | |
|                   DO J = K, N - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(i,j-k)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
| *                    i=j-k
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    A(j-k,j-k)
 | |
|                      S = S + AA
 | |
|                      WORK( J-K ) = WORK( J-K ) + S
 | |
|                      I = I + 1
 | |
|                      S = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    A(j,j)
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,l)
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu=1 & uplo = 'L'
 | |
|                   K = K + 1
 | |
| *                 k=(n+1)/2 for n odd and ilu=1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
| *                    process
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    i=j so process of A(j,j)
 | |
|                      S = S + AA
 | |
|                      WORK( J ) = S
 | |
| *                    is initialised here
 | |
|                      I = I + 1
 | |
| *                    i=j process A(j+k,j+k)
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      S = AA
 | |
|                      DO L = K + J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(l,k+j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( K+J ) = WORK( K+J ) + S
 | |
|                   END DO
 | |
| *                 j=k-1 is special :process col A(k-1,0:k-1)
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,i)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *                 i=k-1
 | |
|                   AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = S
 | |
| *                 done with col j=k+1
 | |
|                   DO J = K, N - 1
 | |
| *                    process col j of A = A(j,0:k-1)
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              n is even & A is k=n/2 by n+1
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 uplo = 'U'
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i+k)
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = S
 | |
|                   END DO
 | |
| *                 j=k
 | |
|                   AA = ABS( DBLE( A( 0+J*LDA ) ) )
 | |
| *                 A(k,k)
 | |
|                   S = AA
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,k+i)
 | |
|                      WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( J ) = WORK( J ) + S
 | |
|                   DO J = K + 1, N - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2 - K
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(i,j-k-1)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
| *                    i=j-1-k
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    A(j-k-1,j-k-1)
 | |
|                      S = S + AA
 | |
|                      WORK( J-K-1 ) = WORK( J-K-1 ) + S
 | |
|                      I = I + 1
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    A(j,j)
 | |
|                      S = AA
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,l)
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
| *                 j=n
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(i,k-1)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *                 i=k-1
 | |
|                   AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = WORK( I ) + S
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu=1 & uplo = 'L'
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
| *                 j=0 is special :process col A(k:n-1,k)
 | |
|                   S = ABS( DBLE( A( 0 ) ) )
 | |
| *                 A(k,k)
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I ) )
 | |
| *                    A(k+i,k)
 | |
|                      WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( K ) = WORK( K ) + S
 | |
|                   DO J = 1, K - 1
 | |
| *                    process
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j-1,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                    i=j-1 so process of A(j-1,j-1)
 | |
|                      S = S + AA
 | |
|                      WORK( J-1 ) = S
 | |
| *                    is initialised here
 | |
|                      I = I + 1
 | |
| *                    i=j process A(j+k,j+k)
 | |
|                      AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
|                      S = AA
 | |
|                      DO L = K + J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(l,k+j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( K+J ) = WORK( K+J ) + S
 | |
|                   END DO
 | |
| *                 j=k is special :process col A(k,0:k-1)
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,i)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *
 | |
| *                 i=k-1
 | |
|                   AA = ABS( DBLE( A( I+J*LDA ) ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = S
 | |
| *                 done with col j=k+1
 | |
|                   DO J = K + 1, N
 | |
| *
 | |
| *                    process col j-1 of A = A(j-1,0:k-1)
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j-1,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J-1 ) = WORK( J-1 ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *       Find normF(A).
 | |
| *
 | |
|          K = ( N+1 ) / 2
 | |
|          SCALE = ZERO
 | |
|          S = ONE
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
| *           n is odd
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is normal & A is n by k
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A is upper
 | |
|                   DO J = 0, K - 3
 | |
|                      CALL ZLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(k,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL ZLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    trap U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = K - 1
 | |
| *                 -> U(k,k) at A(k-1,0)
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    U(k+i,k+i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    U(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 U(n-1,n-1)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                ELSE
 | |
| *                 ilu=1 & A is lower
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL ZLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | |
| *                    trap L at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 1, K - 2
 | |
|                      CALL ZLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,1)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   AA = DBLE( A( 0 ) )
 | |
| *                 L(0,0) at A(0,0)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   L = LDA
 | |
| *                 -> L(k,k) at A(0,1)
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    L(k-1+i,k-1+i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    L(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              A is xpose & A is k by n
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A**H is upper
 | |
|                   DO J = 1, K - 2
 | |
|                      CALL ZLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,k)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k-1 rect. at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL ZLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
 | |
|      $                            SCALE, S )
 | |
| *                    L at A(0,k-1)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = 0 + K*LDA - LDA
 | |
| *                 -> U(k-1,k-1) at A(0,k-1)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 U(k-1,k-1)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   L = L + LDA
 | |
| *                 -> U(0,0) at A(0,k)
 | |
|                   DO J = K, N - 1
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    -> U(j-k,j-k)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    -> U(j,j)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 A**H is lower
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL ZLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = K, N - 1
 | |
|                      CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k-1 rect. at A(0,k)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 3
 | |
|                      CALL ZLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(1,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = 0
 | |
| *                 -> L(0,0) at A(0,0)
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    L(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    L(k+i,k+i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
| *                 L-> k-1 + (k-1)*lda or L(k-1,k-1) at A(k-1,k-1)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 L(k-1,k-1) at A(k-1,k-1)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *           n is even
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is normal
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A is upper
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL ZLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
 | |
| *                 L at A(k+1,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL ZLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                 trap U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = K
 | |
| *                 -> U(k,k) at A(k,0)
 | |
|                   DO I = 0, K - 1
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    U(k+i,k+i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    U(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu=1 & A is lower
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL ZLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
 | |
| *                    trap L at A(1,0)
 | |
|                   END DO
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL ZLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = 0
 | |
| *                 -> L(k,k) at A(0,0)
 | |
|                   DO I = 0, K - 1
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    L(k-1+i,k-1+i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    L(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              A is xpose
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A**H is upper
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL ZLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
 | |
| *                 U at A(0,k+1)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                 k by k rect. at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL ZLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
 | |
|      $                            S )
 | |
| *                 L at A(0,k)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = 0 + K*LDA
 | |
| *                 -> U(k,k) at A(0,k)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 U(k,k)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   L = L + LDA
 | |
| *                 -> U(0,0) at A(0,k+1)
 | |
|                   DO J = K + 1, N - 1
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    -> U(j-k-1,j-k-1)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    -> U(j,j)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
| *                 L=k-1+n*lda
 | |
| *                 -> U(k-1,k-1) at A(k-1,n)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 U(k,k)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                ELSE
 | |
| *                 A**H is lower
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL ZLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
 | |
| *                 U at A(0,1)
 | |
|                   END DO
 | |
|                   DO J = K + 1, N
 | |
|                      CALL ZLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                 k by k rect. at A(0,k+1)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL ZLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | |
| *                 L at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   L = 0
 | |
| *                 -> L(k,k) at A(0,0)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 L(k,k) at A(0,0)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   L = LDA
 | |
| *                 -> L(0,0) at A(0,1)
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = DBLE( A( L ) )
 | |
| *                    L(i,i)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      AA = DBLE( A( L+1 ) )
 | |
| *                    L(k+i+1,k+i+1)
 | |
|                      IF( AA.NE.ZERO ) THEN
 | |
|                         IF( SCALE.LT.AA ) THEN
 | |
|                            S = ONE + S*( SCALE / AA )**2
 | |
|                            SCALE = AA
 | |
|                         ELSE
 | |
|                            S = S + ( AA / SCALE )**2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                      L = L + LDA + 1
 | |
|                   END DO
 | |
| *                 L-> k - 1 + k*lda or L(k-1,k-1) at A(k-1,k)
 | |
|                   AA = DBLE( A( L ) )
 | |
| *                 L(k-1,k-1) at A(k-1,k)
 | |
|                   IF( AA.NE.ZERO ) THEN
 | |
|                      IF( SCALE.LT.AA ) THEN
 | |
|                         S = ONE + S*( SCALE / AA )**2
 | |
|                         SCALE = AA
 | |
|                      ELSE
 | |
|                         S = S + ( AA / SCALE )**2
 | |
|                      END IF
 | |
|                   END IF
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          VALUE = SCALE*SQRT( S )
 | |
|       END IF
 | |
| *
 | |
|       ZLANHF = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLANHF
 | |
| *
 | |
|       END
 |