1884 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1884 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static logical c_false = FALSE_;
 | |
| static integer c__2 = 2;
 | |
| static real c_b26 = 1.f;
 | |
| static real c_b30 = 0.f;
 | |
| static logical c_true = TRUE_;
 | |
| 
 | |
| /* > \brief \b STRSYL */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download STRSYL + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsyl.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsyl.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsyl.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE STRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
 | |
| /*                          LDC, SCALE, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          TRANA, TRANB */
 | |
| /*       INTEGER            INFO, ISGN, LDA, LDB, LDC, M, N */
 | |
| /*       REAL               SCALE */
 | |
| /*       REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > STRSYL solves the real Sylvester matrix equation: */
 | |
| /* > */
 | |
| /* >    op(A)*X + X*op(B) = scale*C or */
 | |
| /* >    op(A)*X - X*op(B) = scale*C, */
 | |
| /* > */
 | |
| /* > where op(A) = A or A**T, and  A and B are both upper quasi- */
 | |
| /* > triangular. A is M-by-M and B is N-by-N; the right hand side C and */
 | |
| /* > the solution X are M-by-N; and scale is an output scale factor, set */
 | |
| /* > <= 1 to avoid overflow in X. */
 | |
| /* > */
 | |
| /* > A and B must be in Schur canonical form (as returned by SHSEQR), that */
 | |
| /* > is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; */
 | |
| /* > each 2-by-2 diagonal block has its diagonal elements equal and its */
 | |
| /* > off-diagonal elements of opposite sign. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] TRANA */
 | |
| /* > \verbatim */
 | |
| /* >          TRANA is CHARACTER*1 */
 | |
| /* >          Specifies the option op(A): */
 | |
| /* >          = 'N': op(A) = A    (No transpose) */
 | |
| /* >          = 'T': op(A) = A**T (Transpose) */
 | |
| /* >          = 'C': op(A) = A**H (Conjugate transpose = Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANB */
 | |
| /* > \verbatim */
 | |
| /* >          TRANB is CHARACTER*1 */
 | |
| /* >          Specifies the option op(B): */
 | |
| /* >          = 'N': op(B) = B    (No transpose) */
 | |
| /* >          = 'T': op(B) = B**T (Transpose) */
 | |
| /* >          = 'C': op(B) = B**H (Conjugate transpose = Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ISGN */
 | |
| /* > \verbatim */
 | |
| /* >          ISGN is INTEGER */
 | |
| /* >          Specifies the sign in the equation: */
 | |
| /* >          = +1: solve op(A)*X + X*op(B) = scale*C */
 | |
| /* >          = -1: solve op(A)*X - X*op(B) = scale*C */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The order of the matrix A, and the number of rows in the */
 | |
| /* >          matrices X and C. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix B, and the number of columns in the */
 | |
| /* >          matrices X and C. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,M) */
 | |
| /* >          The upper quasi-triangular matrix A, in Schur canonical form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB,N) */
 | |
| /* >          The upper quasi-triangular matrix B, in Schur canonical form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (LDC,N) */
 | |
| /* >          On entry, the M-by-N right hand side matrix C. */
 | |
| /* >          On exit, C is overwritten by the solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. LDC >= f2cmax(1,M) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL */
 | |
| /* >          The scale factor, scale, set <= 1 to avoid overflow in X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          = 1: A and B have common or very close eigenvalues; perturbed */
 | |
| /* >               values were used to solve the equation (but the matrices */
 | |
| /* >               A and B are unchanged). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realSYcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void strsyl_(char *trana, char *tranb, integer *isgn, integer 
 | |
| 	*m, integer *n, real *a, integer *lda, real *b, integer *ldb, real *
 | |
| 	c__, integer *ldc, real *scale, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
 | |
| 	    i__3, i__4;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ierr;
 | |
|     real smin;
 | |
|     extern real sdot_(integer *, real *, integer *, real *, integer *);
 | |
|     real suml, sumr;
 | |
|     integer j, k, l;
 | |
|     real x[4]	/* was [2][2] */;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     integer knext, lnext, k1, k2, l1, l2;
 | |
|     real xnorm;
 | |
|     extern /* Subroutine */ void slaln2_(logical *, integer *, integer *, real 
 | |
| 	    *, real *, real *, integer *, real *, real *, real *, integer *, 
 | |
| 	    real *, real *, real *, integer *, real *, real *, integer *);
 | |
|     real a11, db;
 | |
|     extern /* Subroutine */ void slasy2_(logical *, logical *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , integer *, real *, real *, integer *, real *, integer *), 
 | |
| 	    slabad_(real *, real *);
 | |
|     real scaloc;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real bignum;
 | |
|     logical notrna, notrnb;
 | |
|     real smlnum, da11, vec[4]	/* was [2][2] */, dum[1], eps, sgn;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and Test input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     notrna = lsame_(trana, "N");
 | |
|     notrnb = lsame_(tranb, "N");
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! notrna && ! lsame_(trana, "T") && ! lsame_(
 | |
| 	    trana, "C")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notrnb && ! lsame_(tranb, "T") && ! 
 | |
| 	    lsame_(tranb, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (*isgn != 1 && *isgn != -1) {
 | |
| 	*info = -3;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldc < f2cmax(1,*m)) {
 | |
| 	*info = -11;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("STRSYL", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *scale = 1.f;
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set constants to control overflow */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = slamch_("S");
 | |
|     bignum = 1.f / smlnum;
 | |
|     slabad_(&smlnum, &bignum);
 | |
|     smlnum = smlnum * (real) (*m * *n) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /* Computing MAX */
 | |
|     r__1 = smlnum, r__2 = eps * slange_("M", m, m, &a[a_offset], lda, dum), r__1 = f2cmax(r__1,r__2), r__2 = eps * slange_("M", n, n, 
 | |
| 	    &b[b_offset], ldb, dum);
 | |
|     smin = f2cmax(r__1,r__2);
 | |
| 
 | |
|     sgn = (real) (*isgn);
 | |
| 
 | |
|     if (notrna && notrnb) {
 | |
| 
 | |
| /*        Solve    A*X + ISGN*X*B = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        bottom-left corner column by column by */
 | |
| 
 | |
| /*         A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                  M                         L-1 */
 | |
| /*        R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
 | |
| /*                I=K+1                       J=1 */
 | |
| 
 | |
| /*        Start column loop (index = L) */
 | |
| /*        L1 (L2) : column index of the first (first) row of X(K,L). */
 | |
| 
 | |
| 	lnext = 1;
 | |
| 	i__1 = *n;
 | |
| 	for (l = 1; l <= i__1; ++l) {
 | |
| 	    if (l < lnext) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 	    if (l == *n) {
 | |
| 		l1 = l;
 | |
| 		l2 = l;
 | |
| 	    } else {
 | |
| 		if (b[l + 1 + l * b_dim1] != 0.f) {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l + 1;
 | |
| 		    lnext = l + 2;
 | |
| 		} else {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l + 1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Start row loop (index = K) */
 | |
| /*           K1 (K2): row index of the first (last) row of X(K,L). */
 | |
| 
 | |
| 	    knext = *m;
 | |
| 	    for (k = *m; k >= 1; --k) {
 | |
| 		if (k > knext) {
 | |
| 		    goto L60;
 | |
| 		}
 | |
| 		if (k == 1) {
 | |
| 		    k1 = k;
 | |
| 		    k2 = k;
 | |
| 		} else {
 | |
| 		    if (a[k + (k - 1) * a_dim1] != 0.f) {
 | |
| 			k1 = k - 1;
 | |
| 			k2 = k;
 | |
| 			knext = k - 2;
 | |
| 		    } else {
 | |
| 			k1 = k;
 | |
| 			k2 = k;
 | |
| 			knext = k - 1;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (l1 == l2 && k1 == k2) {
 | |
| 		    i__2 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k1 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 		    scaloc = 1.f;
 | |
| 
 | |
| 		    a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
 | |
| 		    da11 = abs(a11);
 | |
| 		    if (da11 <= smin) {
 | |
| 			a11 = smin;
 | |
| 			da11 = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 		    db = abs(vec[0]);
 | |
| 		    if (da11 < 1.f && db > 1.f) {
 | |
| 			if (db > bignum * da11) {
 | |
| 			    scaloc = 1.f / db;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[0] = vec[0] * scaloc / a11;
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L10: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 
 | |
| 		} else if (l1 == l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    r__1 = -sgn * b[l1 + l1 * b_dim1];
 | |
| 		    slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 
 | |
| 			    * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
 | |
| 			     &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L20: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 == k2) {
 | |
| 
 | |
| 		    i__2 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k1 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    i__2 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k1 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    r__1 = -sgn * a[k1 + k1 * a_dim1];
 | |
| 		    slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
 | |
| 			     b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1, 
 | |
| 			    &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L40: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = k2 + 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__2 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    slasy2_(&c_false, &c_false, isgn, &c__2, &c__2, &a[k1 + 
 | |
| 			    k1 * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec,
 | |
| 			     &c__2, &scaloc, x, &c__2, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L50: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[2];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 		    c__[k2 + l2 * c_dim1] = x[3];
 | |
| 		}
 | |
| 
 | |
| L60:
 | |
| 		;
 | |
| 	    }
 | |
| 
 | |
| L70:
 | |
| 	    ;
 | |
| 	}
 | |
| 
 | |
|     } else if (! notrna && notrnb) {
 | |
| 
 | |
| /*        Solve    A**T *X + ISGN*X*B = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        upper-left corner column by column by */
 | |
| 
 | |
| /*          A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                   K-1                          L-1 */
 | |
| /*          R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
 | |
| /*                   I=1                          J=1 */
 | |
| 
 | |
| /*        Start column loop (index = L) */
 | |
| /*        L1 (L2): column index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	lnext = 1;
 | |
| 	i__1 = *n;
 | |
| 	for (l = 1; l <= i__1; ++l) {
 | |
| 	    if (l < lnext) {
 | |
| 		goto L130;
 | |
| 	    }
 | |
| 	    if (l == *n) {
 | |
| 		l1 = l;
 | |
| 		l2 = l;
 | |
| 	    } else {
 | |
| 		if (b[l + 1 + l * b_dim1] != 0.f) {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l + 1;
 | |
| 		    lnext = l + 2;
 | |
| 		} else {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l + 1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Start row loop (index = K) */
 | |
| /*           K1 (K2): row index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	    knext = 1;
 | |
| 	    i__2 = *m;
 | |
| 	    for (k = 1; k <= i__2; ++k) {
 | |
| 		if (k < knext) {
 | |
| 		    goto L120;
 | |
| 		}
 | |
| 		if (k == *m) {
 | |
| 		    k1 = k;
 | |
| 		    k2 = k;
 | |
| 		} else {
 | |
| 		    if (a[k + 1 + k * a_dim1] != 0.f) {
 | |
| 			k1 = k;
 | |
| 			k2 = k + 1;
 | |
| 			knext = k + 2;
 | |
| 		    } else {
 | |
| 			k1 = k;
 | |
| 			k2 = k;
 | |
| 			knext = k + 1;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (l1 == l2 && k1 == k2) {
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 		    scaloc = 1.f;
 | |
| 
 | |
| 		    a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
 | |
| 		    da11 = abs(a11);
 | |
| 		    if (da11 <= smin) {
 | |
| 			a11 = smin;
 | |
| 			da11 = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 		    db = abs(vec[0]);
 | |
| 		    if (da11 < 1.f && db > 1.f) {
 | |
| 			if (db > bignum * da11) {
 | |
| 			    scaloc = 1.f / db;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[0] = vec[0] * scaloc / a11;
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__3 = *n;
 | |
| 			for (j = 1; j <= i__3; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L80: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 
 | |
| 		} else if (l1 == l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    r__1 = -sgn * b[l1 + l1 * b_dim1];
 | |
| 		    slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
 | |
| 			     a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1, 
 | |
| 			    &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__3 = *n;
 | |
| 			for (j = 1; j <= i__3; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L90: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 == k2) {
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    r__1 = -sgn * a[k1 + k1 * a_dim1];
 | |
| 		    slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
 | |
| 			     b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1, 
 | |
| 			    &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__3 = *n;
 | |
| 			for (j = 1; j <= i__3; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L100: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__3 = k1 - 1;
 | |
| 		    suml = sdot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__3 = l1 - 1;
 | |
| 		    sumr = sdot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l2 * 
 | |
| 			    b_dim1 + 1], &c__1);
 | |
| 		    vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    slasy2_(&c_true, &c_false, isgn, &c__2, &c__2, &a[k1 + k1 
 | |
| 			    * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
 | |
| 			    c__2, &scaloc, x, &c__2, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__3 = *n;
 | |
| 			for (j = 1; j <= i__3; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L110: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[2];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 		    c__[k2 + l2 * c_dim1] = x[3];
 | |
| 		}
 | |
| 
 | |
| L120:
 | |
| 		;
 | |
| 	    }
 | |
| L130:
 | |
| 	    ;
 | |
| 	}
 | |
| 
 | |
|     } else if (! notrna && ! notrnb) {
 | |
| 
 | |
| /*        Solve    A**T*X + ISGN*X*B**T = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        top-right corner column by column by */
 | |
| 
 | |
| /*           A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                     K-1                            N */
 | |
| /*            R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
 | |
| /*                     I=1                          J=L+1 */
 | |
| 
 | |
| /*        Start column loop (index = L) */
 | |
| /*        L1 (L2): column index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	lnext = *n;
 | |
| 	for (l = *n; l >= 1; --l) {
 | |
| 	    if (l > lnext) {
 | |
| 		goto L190;
 | |
| 	    }
 | |
| 	    if (l == 1) {
 | |
| 		l1 = l;
 | |
| 		l2 = l;
 | |
| 	    } else {
 | |
| 		if (b[l + (l - 1) * b_dim1] != 0.f) {
 | |
| 		    l1 = l - 1;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l - 2;
 | |
| 		} else {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l - 1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Start row loop (index = K) */
 | |
| /*           K1 (K2): row index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	    knext = 1;
 | |
| 	    i__1 = *m;
 | |
| 	    for (k = 1; k <= i__1; ++k) {
 | |
| 		if (k < knext) {
 | |
| 		    goto L180;
 | |
| 		}
 | |
| 		if (k == *m) {
 | |
| 		    k1 = k;
 | |
| 		    k2 = k;
 | |
| 		} else {
 | |
| 		    if (a[k + 1 + k * a_dim1] != 0.f) {
 | |
| 			k1 = k;
 | |
| 			k2 = k + 1;
 | |
| 			knext = k + 2;
 | |
| 		    } else {
 | |
| 			k1 = k;
 | |
| 			k2 = k;
 | |
| 			knext = k + 1;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (l1 == l2 && k1 == k2) {
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l1 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 		    scaloc = 1.f;
 | |
| 
 | |
| 		    a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
 | |
| 		    da11 = abs(a11);
 | |
| 		    if (da11 <= smin) {
 | |
| 			a11 = smin;
 | |
| 			da11 = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 		    db = abs(vec[0]);
 | |
| 		    if (da11 < 1.f && db > 1.f) {
 | |
| 			if (db > bignum * da11) {
 | |
| 			    scaloc = 1.f / db;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[0] = vec[0] * scaloc / a11;
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L140: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 
 | |
| 		} else if (l1 == l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    r__1 = -sgn * b[l1 + l1 * b_dim1];
 | |
| 		    slaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
 | |
| 			     a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1, 
 | |
| 			    &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L150: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 == k2) {
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    r__1 = -sgn * a[k1 + k1 * a_dim1];
 | |
| 		    slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 
 | |
| 			    * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
 | |
| 			     &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L160: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__2 = k1 - 1;
 | |
| 		    suml = sdot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 * 
 | |
| 			    c_dim1 + 1], &c__1);
 | |
| 		    i__2 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
 | |
| 		    vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    slasy2_(&c_true, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 *
 | |
| 			     a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
 | |
| 			    c__2, &scaloc, x, &c__2, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__2 = *n;
 | |
| 			for (j = 1; j <= i__2; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L170: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[2];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 		    c__[k2 + l2 * c_dim1] = x[3];
 | |
| 		}
 | |
| 
 | |
| L180:
 | |
| 		;
 | |
| 	    }
 | |
| L190:
 | |
| 	    ;
 | |
| 	}
 | |
| 
 | |
|     } else if (notrna && ! notrnb) {
 | |
| 
 | |
| /*        Solve    A*X + ISGN*X*B**T = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        bottom-right corner column by column by */
 | |
| 
 | |
| /*            A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                      M                          N */
 | |
| /*            R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
 | |
| /*                    I=K+1                      J=L+1 */
 | |
| 
 | |
| /*        Start column loop (index = L) */
 | |
| /*        L1 (L2): column index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	lnext = *n;
 | |
| 	for (l = *n; l >= 1; --l) {
 | |
| 	    if (l > lnext) {
 | |
| 		goto L250;
 | |
| 	    }
 | |
| 	    if (l == 1) {
 | |
| 		l1 = l;
 | |
| 		l2 = l;
 | |
| 	    } else {
 | |
| 		if (b[l + (l - 1) * b_dim1] != 0.f) {
 | |
| 		    l1 = l - 1;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l - 2;
 | |
| 		} else {
 | |
| 		    l1 = l;
 | |
| 		    l2 = l;
 | |
| 		    lnext = l - 1;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Start row loop (index = K) */
 | |
| /*           K1 (K2): row index of the first (last) row of X(K,L) */
 | |
| 
 | |
| 	    knext = *m;
 | |
| 	    for (k = *m; k >= 1; --k) {
 | |
| 		if (k > knext) {
 | |
| 		    goto L240;
 | |
| 		}
 | |
| 		if (k == 1) {
 | |
| 		    k1 = k;
 | |
| 		    k2 = k;
 | |
| 		} else {
 | |
| 		    if (a[k + (k - 1) * a_dim1] != 0.f) {
 | |
| 			k1 = k - 1;
 | |
| 			k2 = k;
 | |
| 			knext = k - 2;
 | |
| 		    } else {
 | |
| 			k1 = k;
 | |
| 			k2 = k;
 | |
| 			knext = k - 1;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (l1 == l2 && k1 == k2) {
 | |
| 		    i__1 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l1 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 		    scaloc = 1.f;
 | |
| 
 | |
| 		    a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
 | |
| 		    da11 = abs(a11);
 | |
| 		    if (da11 <= smin) {
 | |
| 			a11 = smin;
 | |
| 			da11 = smin;
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 		    db = abs(vec[0]);
 | |
| 		    if (da11 < 1.f && db > 1.f) {
 | |
| 			if (db > bignum * da11) {
 | |
| 			    scaloc = 1.f / db;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[0] = vec[0] * scaloc / a11;
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (j = 1; j <= i__1; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L200: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 
 | |
| 		} else if (l1 == l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    r__1 = -sgn * b[l1 + l1 * b_dim1];
 | |
| 		    slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 
 | |
| 			    * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &r__1,
 | |
| 			     &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (j = 1; j <= i__1; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L210: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 == k2) {
 | |
| 
 | |
| 		    i__1 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    i__1 = *m - k1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k1 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k1 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn * 
 | |
| 			    sumr));
 | |
| 
 | |
| 		    r__1 = -sgn * a[k1 + k1 * a_dim1];
 | |
| 		    slaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 
 | |
| 			    * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &r__1,
 | |
| 			     &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (j = 1; j <= i__1; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L220: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[1];
 | |
| 
 | |
| 		} else if (l1 != l2 && k1 != k2) {
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    i__1 = *m - k2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = k2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = k2 + 1;
 | |
| 		    suml = sdot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
 | |
| 			    c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
 | |
| 		    i__1 = *n - l2;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = l2 + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = l2 + 1;
 | |
| 		    sumr = sdot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
 | |
| 			     &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
 | |
| 		    vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
 | |
| 
 | |
| 		    slasy2_(&c_false, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 
 | |
| 			    * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
 | |
| 			    c__2, &scaloc, x, &c__2, &xnorm, &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = 1;
 | |
| 		    }
 | |
| 
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (j = 1; j <= i__1; ++j) {
 | |
| 			    sscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
 | |
| /* L230: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 		    c__[k1 + l1 * c_dim1] = x[0];
 | |
| 		    c__[k1 + l2 * c_dim1] = x[2];
 | |
| 		    c__[k2 + l1 * c_dim1] = x[1];
 | |
| 		    c__[k2 + l2 * c_dim1] = x[3];
 | |
| 		}
 | |
| 
 | |
| L240:
 | |
| 		;
 | |
| 	    }
 | |
| L250:
 | |
| 	    ;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of STRSYL */
 | |
| 
 | |
| } /* strsyl_ */
 | |
| 
 |