316 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGET22
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
 | 
						|
*                          WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANSA, TRANSE, TRANSW
 | 
						|
*       INTEGER            LDA, LDE, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RESULT( 2 ), RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGET22 does an eigenvector check.
 | 
						|
*>
 | 
						|
*> The basic test is:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | 
						|
*>
 | 
						|
*> using the 1-norm.  It also tests the normalization of E:
 | 
						|
*>
 | 
						|
*>    RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | 
						|
*>                 j
 | 
						|
*>
 | 
						|
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
 | 
						|
*> vector.  The max-norm of a complex n-vector x in this case is the
 | 
						|
*> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSA
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSA is CHARACTER*1
 | 
						|
*>          Specifies whether or not A is transposed.
 | 
						|
*>          = 'N':  No transpose
 | 
						|
*>          = 'T':  Transpose
 | 
						|
*>          = 'C':  Conjugate transpose
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSE
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSE is CHARACTER*1
 | 
						|
*>          Specifies whether or not E is transposed.
 | 
						|
*>          = 'N':  No transpose, eigenvectors are in columns of E
 | 
						|
*>          = 'T':  Transpose, eigenvectors are in rows of E
 | 
						|
*>          = 'C':  Conjugate transpose, eigenvectors are in rows of E
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSW
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSW is CHARACTER*1
 | 
						|
*>          Specifies whether or not W is transposed.
 | 
						|
*>          = 'N':  No transpose
 | 
						|
*>          = 'T':  Transpose, same as TRANSW = 'N'
 | 
						|
*>          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The matrix whose eigenvectors are in E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX*16 array, dimension (LDE,N)
 | 
						|
*>          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
 | 
						|
*>          are stored in the columns of E, if TRANSE = 'T' or 'C', the
 | 
						|
*>          eigenvectors are stored in the rows of E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of the array E.  LDE >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is COMPLEX*16 array, dimension (N)
 | 
						|
*>          The eigenvalues of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (N*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | 
						|
*>          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | 
						|
*>                       j
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
 | 
						|
     $                   WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANSA, TRANSE, TRANSW
 | 
						|
      INTEGER            LDA, LDE, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RESULT( 2 ), RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          NORMA, NORME
 | 
						|
      INTEGER            ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
 | 
						|
      DOUBLE PRECISION   ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
 | 
						|
     $                   ULP, UNFL
 | 
						|
      COMPLEX*16         WTEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANGE
 | 
						|
      EXTERNAL           LSAME, DLAMCH, ZLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGEMM, ZLASET
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize RESULT (in case N=0)
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
      ITRNSE = 0
 | 
						|
      ITRNSW = 0
 | 
						|
      NORMA = 'O'
 | 
						|
      NORME = 'O'
 | 
						|
*
 | 
						|
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
 | 
						|
         NORMA = 'I'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( TRANSE, 'T' ) ) THEN
 | 
						|
         ITRNSE = 1
 | 
						|
         NORME = 'I'
 | 
						|
      ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
 | 
						|
         ITRNSE = 2
 | 
						|
         NORME = 'I'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( TRANSW, 'C' ) ) THEN
 | 
						|
         ITRNSW = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Normalization of E:
 | 
						|
*
 | 
						|
      ENRMIN = ONE / ULP
 | 
						|
      ENRMAX = ZERO
 | 
						|
      IF( ITRNSE.EQ.0 ) THEN
 | 
						|
         DO 20 JVEC = 1, N
 | 
						|
            TEMP1 = ZERO
 | 
						|
            DO 10 J = 1, N
 | 
						|
               TEMP1 = MAX( TEMP1, ABS( DBLE( E( J, JVEC ) ) )+
 | 
						|
     $                 ABS( DIMAG( E( J, JVEC ) ) ) )
 | 
						|
   10       CONTINUE
 | 
						|
            ENRMIN = MIN( ENRMIN, TEMP1 )
 | 
						|
            ENRMAX = MAX( ENRMAX, TEMP1 )
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 30 JVEC = 1, N
 | 
						|
            RWORK( JVEC ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
         DO 50 J = 1, N
 | 
						|
            DO 40 JVEC = 1, N
 | 
						|
               RWORK( JVEC ) = MAX( RWORK( JVEC ),
 | 
						|
     $                         ABS( DBLE( E( JVEC, J ) ) )+
 | 
						|
     $                         ABS( DIMAG( E( JVEC, J ) ) ) )
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
         DO 60 JVEC = 1, N
 | 
						|
            ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
 | 
						|
            ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Norm of A:
 | 
						|
*
 | 
						|
      ANORM = MAX( ZLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Norm of E:
 | 
						|
*
 | 
						|
      ENORM = MAX( ZLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
 | 
						|
*
 | 
						|
*     Norm of error:
 | 
						|
*
 | 
						|
*     Error =  AE - EW
 | 
						|
*
 | 
						|
      CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
 | 
						|
*
 | 
						|
      JOFF = 0
 | 
						|
      DO 100 JCOL = 1, N
 | 
						|
         IF( ITRNSW.EQ.0 ) THEN
 | 
						|
            WTEMP = W( JCOL )
 | 
						|
         ELSE
 | 
						|
            WTEMP = DCONJG( W( JCOL ) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ITRNSE.EQ.0 ) THEN
 | 
						|
            DO 70 JROW = 1, N
 | 
						|
               WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
 | 
						|
   70       CONTINUE
 | 
						|
         ELSE IF( ITRNSE.EQ.1 ) THEN
 | 
						|
            DO 80 JROW = 1, N
 | 
						|
               WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
 | 
						|
   80       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 90 JROW = 1, N
 | 
						|
               WORK( JOFF+JROW ) = DCONJG( E( JCOL, JROW ) )*WTEMP
 | 
						|
   90       CONTINUE
 | 
						|
         END IF
 | 
						|
         JOFF = JOFF + N
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
      CALL ZGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
 | 
						|
     $            WORK, N )
 | 
						|
*
 | 
						|
      ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
 | 
						|
*
 | 
						|
*     Compute RESULT(1) (avoiding under/overflow)
 | 
						|
*
 | 
						|
      IF( ANORM.GT.ERRNRM ) THEN
 | 
						|
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ONE / ULP
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute RESULT(2) : the normalization error in E.
 | 
						|
*
 | 
						|
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
 | 
						|
     $              ( DBLE( N )*ULP )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGET22
 | 
						|
*
 | 
						|
      END
 |