212 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DBDT05
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DBDT05( M, N, A, LDA, S, NS, U, LDU,
 | 
						|
*                          VT, LDVT, WORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDU, LDVT, N, NS
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), S( * ), U( LDU, * ),
 | 
						|
*      $                   VT( LDVT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
 | 
						|
*>    S = U' * B * V
 | 
						|
*> where U and V are orthogonal matrices and S is diagonal.
 | 
						|
*>
 | 
						|
*> The test ratio to test the singular value decomposition is
 | 
						|
*>    RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
 | 
						|
*> where VT = V' and EPS is the machine precision.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrices A and U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and VT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The m by n matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (NS)
 | 
						|
*>          The singular values from the (partial) SVD of B, sorted in
 | 
						|
*>          decreasing order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NS
 | 
						|
*> \verbatim
 | 
						|
*>          NS is INTEGER
 | 
						|
*>          The number of singular values/vectors from the (partial)
 | 
						|
*>          SVD of B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension (LDU,NS)
 | 
						|
*>          The n by ns orthogonal matrix U in S = U' * B * V.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VT
 | 
						|
*> \verbatim
 | 
						|
*>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
 | 
						|
*>          The n by ns orthogonal matrix V in S = U' * B * V.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVT
 | 
						|
*> \verbatim
 | 
						|
*>          LDVT is INTEGER
 | 
						|
*>          The leading dimension of the array VT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (M,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The test ratio:  norm(S - U' * A * V) / ( n * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DBDT05( M, N, A, LDA, S, NS, U, LDU,
 | 
						|
     $                    VT, LDVT, WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDU, LDVT, M, N, NS
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), S( * ), U( LDU, * ),
 | 
						|
     $                   VT( LDVT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* ======================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DASUM, DLAMCH, DLANGE
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DASUM, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
      ANORM = DLANGE( 'M', M, N, A, LDA, WORK )
 | 
						|
*
 | 
						|
*     Compute U' * A * V.
 | 
						|
*
 | 
						|
      CALL DGEMM( 'N', 'T', M, NS, N, ONE, A, LDA, VT,
 | 
						|
     $            LDVT, ZERO, WORK( 1+NS*NS ), M )
 | 
						|
      CALL DGEMM( 'T', 'N', NS, NS, M, -ONE, U, LDU, WORK( 1+NS*NS ),
 | 
						|
     $            M, ZERO, WORK, NS )
 | 
						|
*
 | 
						|
*     norm(S - U' * B * V)
 | 
						|
*
 | 
						|
      J = 0
 | 
						|
      DO 10 I = 1, NS
 | 
						|
         WORK( J+I ) =  WORK( J+I ) + S( I )
 | 
						|
         RESID = MAX( RESID, DASUM( NS, WORK( J+1 ), 1 ) )
 | 
						|
         J = J + NS
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.GE.RESID ) THEN
 | 
						|
            RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
 | 
						|
         ELSE
 | 
						|
            IF( ANORM.LT.ONE ) THEN
 | 
						|
               RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            ELSE
 | 
						|
               RESID = MIN( RESID / ANORM, DBLE( N ) ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DBDT05
 | 
						|
*
 | 
						|
      END
 |