289 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DBDT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
 | 
						|
*                          RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KD, LDA, LDPT, LDQ, M, N
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
 | 
						|
*      $                   Q( LDQ, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DBDT01 reconstructs a general matrix A from its bidiagonal form
 | 
						|
*>    A = Q * B * P**T
 | 
						|
*> where Q (m by min(m,n)) and P**T (min(m,n) by n) are orthogonal
 | 
						|
*> matrices and B is bidiagonal.
 | 
						|
*>
 | 
						|
*> The test ratio to test the reduction is
 | 
						|
*>    RESID = norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
 | 
						|
*> where EPS is the machine precision.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrices A and Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          If KD = 0, B is diagonal and the array E is not referenced.
 | 
						|
*>          If KD = 1, the reduction was performed by xGEBRD; B is upper
 | 
						|
*>          bidiagonal if M >= N, and lower bidiagonal if M < N.
 | 
						|
*>          If KD = -1, the reduction was performed by xGBBRD; B is
 | 
						|
*>          always upper bidiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          The m by n matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | 
						|
*>          The m by min(m,n) orthogonal matrix Q in the reduction
 | 
						|
*>          A = Q * B * P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (min(M,N))
 | 
						|
*>          The diagonal elements of the bidiagonal matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
 | 
						|
*>          The superdiagonal elements of the bidiagonal matrix B if
 | 
						|
*>          m >= n, or the subdiagonal elements of B if m < n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PT
 | 
						|
*> \verbatim
 | 
						|
*>          PT is DOUBLE PRECISION array, dimension (LDPT,N)
 | 
						|
*>          The min(m,n) by n orthogonal matrix P**T in the reduction
 | 
						|
*>          A = Q * B * P**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDPT
 | 
						|
*> \verbatim
 | 
						|
*>          LDPT is INTEGER
 | 
						|
*>          The leading dimension of the array PT.
 | 
						|
*>          LDPT >= max(1,min(M,N)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (M+N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The test ratio:
 | 
						|
*>          norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KD, LDA, LDPT, LDQ, M, N
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
 | 
						|
     $                   Q( LDQ, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DASUM, DLAMCH, DLANGE
 | 
						|
      EXTERNAL           DASUM, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DGEMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute A - Q * B * P**T one column at a time.
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      IF( KD.NE.0 ) THEN
 | 
						|
*
 | 
						|
*        B is bidiagonal.
 | 
						|
*
 | 
						|
         IF( KD.NE.0 .AND. M.GE.N ) THEN
 | 
						|
*
 | 
						|
*           B is upper bidiagonal and M >= N.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N
 | 
						|
               CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
 | 
						|
               DO 10 I = 1, N - 1
 | 
						|
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
 | 
						|
   10          CONTINUE
 | 
						|
               WORK( M+N ) = D( N )*PT( N, J )
 | 
						|
               CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
 | 
						|
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
 | 
						|
               RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE IF( KD.LT.0 ) THEN
 | 
						|
*
 | 
						|
*           B is upper bidiagonal and M < N.
 | 
						|
*
 | 
						|
            DO 40 J = 1, N
 | 
						|
               CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
 | 
						|
               DO 30 I = 1, M - 1
 | 
						|
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
 | 
						|
   30          CONTINUE
 | 
						|
               WORK( M+M ) = D( M )*PT( M, J )
 | 
						|
               CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
 | 
						|
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
 | 
						|
               RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
 | 
						|
   40       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           B is lower bidiagonal.
 | 
						|
*
 | 
						|
            DO 60 J = 1, N
 | 
						|
               CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
 | 
						|
               WORK( M+1 ) = D( 1 )*PT( 1, J )
 | 
						|
               DO 50 I = 2, M
 | 
						|
                  WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
 | 
						|
     $                          D( I )*PT( I, J )
 | 
						|
   50          CONTINUE
 | 
						|
               CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
 | 
						|
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
 | 
						|
               RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        B is diagonal.
 | 
						|
*
 | 
						|
         IF( M.GE.N ) THEN
 | 
						|
            DO 80 J = 1, N
 | 
						|
               CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
 | 
						|
               DO 70 I = 1, N
 | 
						|
                  WORK( M+I ) = D( I )*PT( I, J )
 | 
						|
   70          CONTINUE
 | 
						|
               CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
 | 
						|
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
 | 
						|
               RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
 | 
						|
   80       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 100 J = 1, N
 | 
						|
               CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
 | 
						|
               DO 90 I = 1, M
 | 
						|
                  WORK( M+I ) = D( I )*PT( I, J )
 | 
						|
   90          CONTINUE
 | 
						|
               CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
 | 
						|
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
 | 
						|
               RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm(A - Q * B * P**T) / ( n * norm(A) * EPS )
 | 
						|
*
 | 
						|
      ANORM = DLANGE( '1', M, N, A, LDA, WORK )
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         IF( RESID.NE.ZERO )
 | 
						|
     $      RESID = ONE / EPS
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.GE.RESID ) THEN
 | 
						|
            RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
 | 
						|
         ELSE
 | 
						|
            IF( ANORM.LT.ONE ) THEN
 | 
						|
               RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            ELSE
 | 
						|
               RESID = MIN( RESID / ANORM, DBLE( N ) ) /
 | 
						|
     $                 ( DBLE( N )*EPS )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DBDT01
 | 
						|
*
 | 
						|
      END
 |