732 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			732 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLARFB + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
 | 
						|
*                          T, LDT, C, LDC, WORK, LDWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | 
						|
*       INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | 
						|
*      $                   WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLARFB applies a complex block reflector H or its transpose H**H to a
 | 
						|
*> complex M-by-N matrix C, from either the left or the right.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply H or H**H from the Left
 | 
						|
*>          = 'R': apply H or H**H from the Right
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N': apply H (No transpose)
 | 
						|
*>          = 'C': apply H**H (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIRECT
 | 
						|
*> \verbatim
 | 
						|
*>          DIRECT is CHARACTER*1
 | 
						|
*>          Indicates how H is formed from a product of elementary
 | 
						|
*>          reflectors
 | 
						|
*>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
 | 
						|
*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] STOREV
 | 
						|
*> \verbatim
 | 
						|
*>          STOREV is CHARACTER*1
 | 
						|
*>          Indicates how the vectors which define the elementary
 | 
						|
*>          reflectors are stored:
 | 
						|
*>          = 'C': Columnwise
 | 
						|
*>          = 'R': Rowwise
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The order of the matrix T (= the number of elementary
 | 
						|
*>          reflectors whose product defines the block reflector).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension
 | 
						|
*>                                (LDV,K) if STOREV = 'C'
 | 
						|
*>                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
 | 
						|
*>                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
 | 
						|
*>          See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V.
 | 
						|
*>          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
 | 
						|
*>          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
 | 
						|
*>          if STOREV = 'R', LDV >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is COMPLEX*16 array, dimension (LDT,K)
 | 
						|
*>          The triangular K-by-K matrix T in the representation of the
 | 
						|
*>          block reflector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (LDWORK,K)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.
 | 
						|
*>          If SIDE = 'L', LDWORK >= max(1,N);
 | 
						|
*>          if SIDE = 'R', LDWORK >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2013
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The shape of the matrix V and the storage of the vectors which define
 | 
						|
*>  the H(i) is best illustrated by the following example with n = 5 and
 | 
						|
*>  k = 3. The elements equal to 1 are not stored; the corresponding
 | 
						|
*>  array elements are modified but restored on exit. The rest of the
 | 
						|
*>  array is not used.
 | 
						|
*>
 | 
						|
*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
 | 
						|
*>                   ( v1  1    )                     (     1 v2 v2 v2 )
 | 
						|
*>                   ( v1 v2  1 )                     (        1 v3 v3 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>
 | 
						|
*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
 | 
						|
*>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
 | 
						|
*>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
 | 
						|
*>                   (     1 v3 )
 | 
						|
*>                   (        1 )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
 | 
						|
     $                   T, LDT, C, LDC, WORK, LDWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | 
						|
      INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | 
						|
     $                   WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          TRANST
 | 
						|
      INTEGER            I, J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZCOPY, ZGEMM, ZLACGV, ZTRMM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DCONJG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						|
         TRANST = 'C'
 | 
						|
      ELSE
 | 
						|
         TRANST = 'N'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( STOREV, 'C' ) ) THEN
 | 
						|
*
 | 
						|
         IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
*
 | 
						|
*           Let  V =  ( V1 )    (first K rows)
 | 
						|
*                     ( V2 )
 | 
						|
*           where  V1  is unit lower triangular.
 | 
						|
*
 | 
						|
            IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  H * C  or  H**H * C  where  C = ( C1 )
 | 
						|
*                                                    ( C2 )
 | 
						|
*
 | 
						|
*              W := C**H * V  =  (C1**H * V1 + C2**H * V2)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C1**H
 | 
						|
*
 | 
						|
               DO 10 J = 1, K
 | 
						|
                  CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
 | 
						|
                  CALL ZLACGV( N, WORK( 1, J ), 1 )
 | 
						|
   10          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V1
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
 | 
						|
     $                     K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C2**H * V2
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
 | 
						|
     $                        K, M-K, ONE, C( K+1, 1 ), LDC,
 | 
						|
     $                        V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T**H  or  W * T
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - V * W**H
 | 
						|
*
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C2 := C2 - V2 * W**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose',
 | 
						|
     $                        M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
 | 
						|
     $                        LDWORK, ONE, C( K+1, 1 ), LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V1**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
 | 
						|
     $                     'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C1 := C1 - W**H
 | 
						|
*
 | 
						|
               DO 30 J = 1, K
 | 
						|
                  DO 20 I = 1, N
 | 
						|
                     C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
 | 
						|
   20             CONTINUE
 | 
						|
   30          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  C * H  or  C * H**H  where  C = ( C1  C2 )
 | 
						|
*
 | 
						|
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C1
 | 
						|
*
 | 
						|
               DO 40 J = 1, K
 | 
						|
                  CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
 | 
						|
   40          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V1
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
 | 
						|
     $                     K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C2 * V2
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
 | 
						|
     $                        ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
 | 
						|
     $                        ONE, WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T  or  W * T**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - W * V**H
 | 
						|
*
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C2 := C2 - W * V2**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
 | 
						|
     $                        N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
 | 
						|
     $                        LDV, ONE, C( 1, K+1 ), LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V1**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
 | 
						|
     $                     'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C1 := C1 - W
 | 
						|
*
 | 
						|
               DO 60 J = 1, K
 | 
						|
                  DO 50 I = 1, M
 | 
						|
                     C( I, J ) = C( I, J ) - WORK( I, J )
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Let  V =  ( V1 )
 | 
						|
*                     ( V2 )    (last K rows)
 | 
						|
*           where  V2  is unit upper triangular.
 | 
						|
*
 | 
						|
            IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  H * C  or  H**H * C  where  C = ( C1 )
 | 
						|
*                                                    ( C2 )
 | 
						|
*
 | 
						|
*              W := C**H * V  =  (C1**H * V1 + C2**H * V2)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C2**H
 | 
						|
*
 | 
						|
               DO 70 J = 1, K
 | 
						|
                  CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
 | 
						|
                  CALL ZLACGV( N, WORK( 1, J ), 1 )
 | 
						|
   70          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V2
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
 | 
						|
     $                     K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C1**H * V1
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
 | 
						|
     $                        K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
 | 
						|
     $                        LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T**H  or  W * T
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - V * W**H
 | 
						|
*
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C1 := C1 - V1 * W**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose',
 | 
						|
     $                        M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
 | 
						|
     $                        ONE, C, LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V2**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
 | 
						|
     $                     'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
 | 
						|
     $                     LDWORK )
 | 
						|
*
 | 
						|
*              C2 := C2 - W**H
 | 
						|
*
 | 
						|
               DO 90 J = 1, K
 | 
						|
                  DO 80 I = 1, N
 | 
						|
                     C( M-K+J, I ) = C( M-K+J, I ) -
 | 
						|
     $                               DCONJG( WORK( I, J ) )
 | 
						|
   80             CONTINUE
 | 
						|
   90          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  C * H  or  C * H**H  where  C = ( C1  C2 )
 | 
						|
*
 | 
						|
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C2
 | 
						|
*
 | 
						|
               DO 100 J = 1, K
 | 
						|
                  CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
 | 
						|
  100          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V2
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
 | 
						|
     $                     K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C1 * V1
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
 | 
						|
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T  or  W * T**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - W * V**H
 | 
						|
*
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C1 := C1 - W * V1**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
 | 
						|
     $                        N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
 | 
						|
     $                        C, LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V2**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
 | 
						|
     $                     'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
 | 
						|
     $                     LDWORK )
 | 
						|
*
 | 
						|
*              C2 := C2 - W
 | 
						|
*
 | 
						|
               DO 120 J = 1, K
 | 
						|
                  DO 110 I = 1, M
 | 
						|
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
 | 
						|
  110             CONTINUE
 | 
						|
  120          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( LSAME( STOREV, 'R' ) ) THEN
 | 
						|
*
 | 
						|
         IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
*
 | 
						|
*           Let  V =  ( V1  V2 )    (V1: first K columns)
 | 
						|
*           where  V1  is unit upper triangular.
 | 
						|
*
 | 
						|
            IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  H * C  or  H**H * C  where  C = ( C1 )
 | 
						|
*                                                    ( C2 )
 | 
						|
*
 | 
						|
*              W := C**H * V**H  =  (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C1**H
 | 
						|
*
 | 
						|
               DO 130 J = 1, K
 | 
						|
                  CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
 | 
						|
                  CALL ZLACGV( N, WORK( 1, J ), 1 )
 | 
						|
  130          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V1**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
 | 
						|
     $                     'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C2**H * V2**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose',
 | 
						|
     $                        'Conjugate transpose', N, K, M-K, ONE,
 | 
						|
     $                        C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
 | 
						|
     $                        WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T**H  or  W * T
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - V**H * W**H
 | 
						|
*
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C2 := C2 - V2**H * W**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose',
 | 
						|
     $                        'Conjugate transpose', M-K, N, K, -ONE,
 | 
						|
     $                        V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
 | 
						|
     $                        C( K+1, 1 ), LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V1
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
 | 
						|
     $                     K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C1 := C1 - W**H
 | 
						|
*
 | 
						|
               DO 150 J = 1, K
 | 
						|
                  DO 140 I = 1, N
 | 
						|
                     C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
 | 
						|
  140             CONTINUE
 | 
						|
  150          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  C * H  or  C * H**H  where  C = ( C1  C2 )
 | 
						|
*
 | 
						|
*              W := C * V**H  =  (C1*V1**H + C2*V2**H)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C1
 | 
						|
*
 | 
						|
               DO 160 J = 1, K
 | 
						|
                  CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
 | 
						|
  160          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V1**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
 | 
						|
     $                     'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C2 * V2**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
 | 
						|
     $                        K, N-K, ONE, C( 1, K+1 ), LDC,
 | 
						|
     $                        V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T  or  W * T**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - W * V
 | 
						|
*
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C2 := C2 - W * V2
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
 | 
						|
     $                        -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
 | 
						|
     $                        C( 1, K+1 ), LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V1
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
 | 
						|
     $                     K, ONE, V, LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C1 := C1 - W
 | 
						|
*
 | 
						|
               DO 180 J = 1, K
 | 
						|
                  DO 170 I = 1, M
 | 
						|
                     C( I, J ) = C( I, J ) - WORK( I, J )
 | 
						|
  170             CONTINUE
 | 
						|
  180          CONTINUE
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Let  V =  ( V1  V2 )    (V2: last K columns)
 | 
						|
*           where  V2  is unit lower triangular.
 | 
						|
*
 | 
						|
            IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  H * C  or  H**H * C  where  C = ( C1 )
 | 
						|
*                                                    ( C2 )
 | 
						|
*
 | 
						|
*              W := C**H * V**H  =  (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C2**H
 | 
						|
*
 | 
						|
               DO 190 J = 1, K
 | 
						|
                  CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
 | 
						|
                  CALL ZLACGV( N, WORK( 1, J ), 1 )
 | 
						|
  190          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V2**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
 | 
						|
     $                     'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
 | 
						|
     $                     LDWORK )
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C1**H * V1**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose',
 | 
						|
     $                        'Conjugate transpose', N, K, M-K, ONE, C,
 | 
						|
     $                        LDC, V, LDV, ONE, WORK, LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T**H  or  W * T
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - V**H * W**H
 | 
						|
*
 | 
						|
               IF( M.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C1 := C1 - V1**H * W**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate transpose',
 | 
						|
     $                        'Conjugate transpose', M-K, N, K, -ONE, V,
 | 
						|
     $                        LDV, WORK, LDWORK, ONE, C, LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V2
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
 | 
						|
     $                     K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C2 := C2 - W**H
 | 
						|
*
 | 
						|
               DO 210 J = 1, K
 | 
						|
                  DO 200 I = 1, N
 | 
						|
                     C( M-K+J, I ) = C( M-K+J, I ) -
 | 
						|
     $                               DCONJG( WORK( I, J ) )
 | 
						|
  200             CONTINUE
 | 
						|
  210          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*              Form  C * H  or  C * H**H  where  C = ( C1  C2 )
 | 
						|
*
 | 
						|
*              W := C * V**H  =  (C1*V1**H + C2*V2**H)  (stored in WORK)
 | 
						|
*
 | 
						|
*              W := C2
 | 
						|
*
 | 
						|
               DO 220 J = 1, K
 | 
						|
                  CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
 | 
						|
  220          CONTINUE
 | 
						|
*
 | 
						|
*              W := W * V2**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
 | 
						|
     $                     'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
 | 
						|
     $                     LDWORK )
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 W := W + C1 * V1**H
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
 | 
						|
     $                        K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
 | 
						|
     $                        LDWORK )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * T  or  W * T**H
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
 | 
						|
     $                     ONE, T, LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C := C - W * V
 | 
						|
*
 | 
						|
               IF( N.GT.K ) THEN
 | 
						|
*
 | 
						|
*                 C1 := C1 - W * V1
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
 | 
						|
     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              W := W * V2
 | 
						|
*
 | 
						|
               CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
 | 
						|
     $                     K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
 | 
						|
*
 | 
						|
*              C1 := C1 - W
 | 
						|
*
 | 
						|
               DO 240 J = 1, K
 | 
						|
                  DO 230 I = 1, M
 | 
						|
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
 | 
						|
  230             CONTINUE
 | 
						|
  240          CONTINUE
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLARFB
 | 
						|
*
 | 
						|
      END
 |