303 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSTEGR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DSTEGR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstegr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstegr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstegr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | 
						|
*                  ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | 
						|
*                  LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, RANGE
 | 
						|
*       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | 
						|
*       DOUBLE PRECISION ABSTOL, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISUPPZ( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | 
						|
*       DOUBLE PRECISION   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSTEGR computes selected eigenvalues and, optionally, eigenvectors
 | 
						|
*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
 | 
						|
*> a well defined set of pairwise different real eigenvalues, the corresponding
 | 
						|
*> real eigenvectors are pairwise orthogonal.
 | 
						|
*>
 | 
						|
*> The spectrum may be computed either completely or partially by specifying
 | 
						|
*> either an interval (VL,VU] or a range of indices IL:IU for the desired
 | 
						|
*> eigenvalues.
 | 
						|
*>
 | 
						|
*> DSTEGR is a compatibility wrapper around the improved DSTEMR routine.
 | 
						|
*> See DSTEMR for further details.
 | 
						|
*>
 | 
						|
*> One important change is that the ABSTOL parameter no longer provides any
 | 
						|
*> benefit and hence is no longer used.
 | 
						|
*>
 | 
						|
*> Note : DSTEGR and DSTEMR work only on machines which follow
 | 
						|
*> IEEE-754 floating-point standard in their handling of infinities and
 | 
						|
*> NaNs.  Normal execution may create these exceptiona values and hence
 | 
						|
*> may abort due to a floating point exception in environments which
 | 
						|
*> do not conform to the IEEE-754 standard.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANGE
 | 
						|
*> \verbatim
 | 
						|
*>          RANGE is CHARACTER*1
 | 
						|
*>          = 'A': all eigenvalues will be found.
 | 
						|
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | 
						|
*>                 will be found.
 | 
						|
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the N diagonal elements of the tridiagonal matrix
 | 
						|
*>          T. On exit, D is overwritten.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          On entry, the (N-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
 | 
						|
*>          input, but is used internally as workspace.
 | 
						|
*>          On exit, E is overwritten.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          If RANGE='V', the lower bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is DOUBLE PRECISION
 | 
						|
*>
 | 
						|
*>          If RANGE='V', the upper bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IL
 | 
						|
*> \verbatim
 | 
						|
*>          IL is INTEGER
 | 
						|
*>
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          smallest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IU
 | 
						|
*> \verbatim
 | 
						|
*>          IU is INTEGER
 | 
						|
*>
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          largest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ABSTOL
 | 
						|
*> \verbatim
 | 
						|
*>          ABSTOL is DOUBLE PRECISION
 | 
						|
*>          Unused.  Was the absolute error tolerance for the
 | 
						|
*>          eigenvalues/eigenvectors in previous versions.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The total number of eigenvalues found.  0 <= M <= N.
 | 
						|
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The first M elements contain the selected eigenvalues in
 | 
						|
*>          ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
 | 
						|
*>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
 | 
						|
*>          contain the orthonormal eigenvectors of the matrix T
 | 
						|
*>          corresponding to the selected eigenvalues, with the i-th
 | 
						|
*>          column of Z holding the eigenvector associated with W(i).
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*>          Note: the user must ensure that at least max(1,M) columns are
 | 
						|
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | 
						|
*>          is not known in advance and an upper bound must be used.
 | 
						|
*>          Supplying N columns is always safe.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', then LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ISUPPZ
 | 
						|
*> \verbatim
 | 
						|
*>          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
 | 
						|
*>          The support of the eigenvectors in Z, i.e., the indices
 | 
						|
*>          indicating the nonzero elements in Z. The i-th computed eigenvector
 | 
						|
*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | 
						|
*>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
 | 
						|
*>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal
 | 
						|
*>          (and minimal) LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,18*N)
 | 
						|
*>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (LIWORK)
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
 | 
						|
*>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
 | 
						|
*>          if only the eigenvalues are to be computed.
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal size of the IWORK array,
 | 
						|
*>          returns this value as the first entry of the IWORK array, and
 | 
						|
*>          no error message related to LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          On exit, INFO
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = 1X, internal error in DLARRE,
 | 
						|
*>                if INFO = 2X, internal error in DLARRV.
 | 
						|
*>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
 | 
						|
*>                the nonzero error code returned by DLARRE or
 | 
						|
*>                DLARRV, respectively.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Inderjit Dhillon, IBM Almaden, USA \n
 | 
						|
*> Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*> Christof Voemel, LBNL/NERSC, USA \n
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | 
						|
     $           ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | 
						|
     $           LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, RANGE
 | 
						|
      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | 
						|
      DOUBLE PRECISION ABSTOL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISUPPZ( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | 
						|
      DOUBLE PRECISION   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL TRYRAC
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL DSTEMR
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
      INFO = 0
 | 
						|
      TRYRAC = .FALSE.
 | 
						|
 | 
						|
      CALL DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | 
						|
     $                   M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
 | 
						|
     $                   IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*     End of DSTEGR
 | 
						|
*
 | 
						|
      END
 |