190 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			190 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAED5 used by sstedc. Solves the 2-by-2 secular equation.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAED5 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            I
 | 
						|
*       DOUBLE PRECISION   DLAM, RHO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), Z( 2 )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This subroutine computes the I-th eigenvalue of a symmetric rank-one
 | 
						|
*> modification of a 2-by-2 diagonal matrix
 | 
						|
*>
 | 
						|
*>            diag( D )  +  RHO * Z * transpose(Z) .
 | 
						|
*>
 | 
						|
*> The diagonal elements in the array D are assumed to satisfy
 | 
						|
*>
 | 
						|
*>            D(i) < D(j)  for  i < j .
 | 
						|
*>
 | 
						|
*> We also assume RHO > 0 and that the Euclidean norm of the vector
 | 
						|
*> Z is one.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] I
 | 
						|
*> \verbatim
 | 
						|
*>          I is INTEGER
 | 
						|
*>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>         The original eigenvalues.  We assume D(1) < D(2).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>         The components of the updating vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DELTA
 | 
						|
*> \verbatim
 | 
						|
*>          DELTA is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>         The vector DELTA contains the information necessary
 | 
						|
*>         to construct the eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RHO
 | 
						|
*> \verbatim
 | 
						|
*>          RHO is DOUBLE PRECISION
 | 
						|
*>         The scalar in the symmetric updating formula.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DLAM
 | 
						|
*> \verbatim
 | 
						|
*>          DLAM is DOUBLE PRECISION
 | 
						|
*>         The computed lambda_I, the I-th updated eigenvalue.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ren-Cang Li, Computer Science Division, University of California
 | 
						|
*>     at Berkeley, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            I
 | 
						|
      DOUBLE PRECISION   DLAM, RHO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( 2 ), DELTA( 2 ), Z( 2 )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | 
						|
     $                   FOUR = 4.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   B, C, DEL, TAU, TEMP, W
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      DEL = D( 2 ) - D( 1 )
 | 
						|
      IF( I.EQ.1 ) THEN
 | 
						|
         W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
 | 
						|
         IF( W.GT.ZERO ) THEN
 | 
						|
            B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | 
						|
            C = RHO*Z( 1 )*Z( 1 )*DEL
 | 
						|
*
 | 
						|
*           B > ZERO, always
 | 
						|
*
 | 
						|
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
 | 
						|
            DLAM = D( 1 ) + TAU
 | 
						|
            DELTA( 1 ) = -Z( 1 ) / TAU
 | 
						|
            DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
 | 
						|
         ELSE
 | 
						|
            B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | 
						|
            C = RHO*Z( 2 )*Z( 2 )*DEL
 | 
						|
            IF( B.GT.ZERO ) THEN
 | 
						|
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
 | 
						|
            ELSE
 | 
						|
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
 | 
						|
            END IF
 | 
						|
            DLAM = D( 2 ) + TAU
 | 
						|
            DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
 | 
						|
            DELTA( 2 ) = -Z( 2 ) / TAU
 | 
						|
         END IF
 | 
						|
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
 | 
						|
         DELTA( 1 ) = DELTA( 1 ) / TEMP
 | 
						|
         DELTA( 2 ) = DELTA( 2 ) / TEMP
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*     Now I=2
 | 
						|
*
 | 
						|
         B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 | 
						|
         C = RHO*Z( 2 )*Z( 2 )*DEL
 | 
						|
         IF( B.GT.ZERO ) THEN
 | 
						|
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
 | 
						|
         ELSE
 | 
						|
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
 | 
						|
         END IF
 | 
						|
         DLAM = D( 2 ) + TAU
 | 
						|
         DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
 | 
						|
         DELTA( 2 ) = -Z( 2 ) / TAU
 | 
						|
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
 | 
						|
         DELTA( 1 ) = DELTA( 1 ) / TEMP
 | 
						|
         DELTA( 2 ) = DELTA( 2 ) / TEMP
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End OF DLAED5
 | 
						|
*
 | 
						|
      END
 |