469 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			469 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CPTRFS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CPTRFS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptrfs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptrfs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptrfs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | 
						|
*                          FERR, BERR, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               BERR( * ), D( * ), DF( * ), FERR( * ),
 | 
						|
*      $                   RWORK( * )
 | 
						|
*       COMPLEX            B( LDB, * ), E( * ), EF( * ), WORK( * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CPTRFS improves the computed solution to a system of linear
 | 
						|
*> equations when the coefficient matrix is Hermitian positive definite
 | 
						|
*> and tridiagonal, and provides error bounds and backward error
 | 
						|
*> estimates for the solution.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the superdiagonal or the subdiagonal of the
 | 
						|
*>          tridiagonal matrix A is stored and the form of the
 | 
						|
*>          factorization:
 | 
						|
*>          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
 | 
						|
*>          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
 | 
						|
*>          (The two forms are equivalent if A is real.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n real diagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (N-1)
 | 
						|
*>          The (n-1) off-diagonal elements of the tridiagonal matrix A
 | 
						|
*>          (see UPLO).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DF
 | 
						|
*> \verbatim
 | 
						|
*>          DF is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the diagonal matrix D from
 | 
						|
*>          the factorization computed by CPTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EF
 | 
						|
*> \verbatim
 | 
						|
*>          EF is COMPLEX array, dimension (N-1)
 | 
						|
*>          The (n-1) off-diagonal elements of the unit bidiagonal
 | 
						|
*>          factor U or L from the factorization computed by CPTTRF
 | 
						|
*>          (see UPLO).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (LDX,NRHS)
 | 
						|
*>          On entry, the solution matrix X, as computed by CPTTRS.
 | 
						|
*>          On exit, the improved solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] FERR
 | 
						|
*> \verbatim
 | 
						|
*>          FERR is REAL array, dimension (NRHS)
 | 
						|
*>          The forward error bound for each solution vector
 | 
						|
*>          X(j) (the j-th column of the solution matrix X).
 | 
						|
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | 
						|
*>          is an estimated upper bound for the magnitude of the largest
 | 
						|
*>          element in (X(j) - XTRUE) divided by the magnitude of the
 | 
						|
*>          largest element in X(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BERR
 | 
						|
*> \verbatim
 | 
						|
*>          BERR is REAL array, dimension (NRHS)
 | 
						|
*>          The componentwise relative backward error of each solution
 | 
						|
*>          vector X(j) (i.e., the smallest relative change in
 | 
						|
*>          any element of A or B that makes X(j) an exact solution).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  ITMAX is the maximum number of steps of iterative refinement.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexPTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | 
						|
     $                   FERR, BERR, WORK, RWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDB, LDX, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               BERR( * ), D( * ), DF( * ), FERR( * ),
 | 
						|
     $                   RWORK( * )
 | 
						|
      COMPLEX            B( LDB, * ), E( * ), EF( * ), WORK( * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            ITMAX
 | 
						|
      PARAMETER          ( ITMAX = 5 )
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0 )
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
      REAL               TWO
 | 
						|
      PARAMETER          ( TWO = 2.0E+0 )
 | 
						|
      REAL               THREE
 | 
						|
      PARAMETER          ( THREE = 3.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            COUNT, I, IX, J, NZ
 | 
						|
      REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
 | 
						|
      COMPLEX            BI, CX, DX, EX, ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           LSAME, ISAMAX, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CAXPY, CPTTRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CPTRFS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | 
						|
         DO 10 J = 1, NRHS
 | 
						|
            FERR( J ) = ZERO
 | 
						|
            BERR( J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     NZ = maximum number of nonzero elements in each row of A, plus 1
 | 
						|
*
 | 
						|
      NZ = 4
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      SAFE1 = NZ*SAFMIN
 | 
						|
      SAFE2 = SAFE1 / EPS
 | 
						|
*
 | 
						|
*     Do for each right hand side
 | 
						|
*
 | 
						|
      DO 100 J = 1, NRHS
 | 
						|
*
 | 
						|
         COUNT = 1
 | 
						|
         LSTRES = THREE
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Loop until stopping criterion is satisfied.
 | 
						|
*
 | 
						|
*        Compute residual R = B - A * X.  Also compute
 | 
						|
*        abs(A)*abs(x) + abs(b) for use in the backward error bound.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               BI = B( 1, J )
 | 
						|
               DX = D( 1 )*X( 1, J )
 | 
						|
               WORK( 1 ) = BI - DX
 | 
						|
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
 | 
						|
            ELSE
 | 
						|
               BI = B( 1, J )
 | 
						|
               DX = D( 1 )*X( 1, J )
 | 
						|
               EX = E( 1 )*X( 2, J )
 | 
						|
               WORK( 1 ) = BI - DX - EX
 | 
						|
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
 | 
						|
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
 | 
						|
               DO 30 I = 2, N - 1
 | 
						|
                  BI = B( I, J )
 | 
						|
                  CX = CONJG( E( I-1 ) )*X( I-1, J )
 | 
						|
                  DX = D( I )*X( I, J )
 | 
						|
                  EX = E( I )*X( I+1, J )
 | 
						|
                  WORK( I ) = BI - CX - DX - EX
 | 
						|
                  RWORK( I ) = CABS1( BI ) +
 | 
						|
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
 | 
						|
     $                         CABS1( DX ) + CABS1( E( I ) )*
 | 
						|
     $                         CABS1( X( I+1, J ) )
 | 
						|
   30          CONTINUE
 | 
						|
               BI = B( N, J )
 | 
						|
               CX = CONJG( E( N-1 ) )*X( N-1, J )
 | 
						|
               DX = D( N )*X( N, J )
 | 
						|
               WORK( N ) = BI - CX - DX
 | 
						|
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
 | 
						|
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            IF( N.EQ.1 ) THEN
 | 
						|
               BI = B( 1, J )
 | 
						|
               DX = D( 1 )*X( 1, J )
 | 
						|
               WORK( 1 ) = BI - DX
 | 
						|
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
 | 
						|
            ELSE
 | 
						|
               BI = B( 1, J )
 | 
						|
               DX = D( 1 )*X( 1, J )
 | 
						|
               EX = CONJG( E( 1 ) )*X( 2, J )
 | 
						|
               WORK( 1 ) = BI - DX - EX
 | 
						|
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
 | 
						|
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
 | 
						|
               DO 40 I = 2, N - 1
 | 
						|
                  BI = B( I, J )
 | 
						|
                  CX = E( I-1 )*X( I-1, J )
 | 
						|
                  DX = D( I )*X( I, J )
 | 
						|
                  EX = CONJG( E( I ) )*X( I+1, J )
 | 
						|
                  WORK( I ) = BI - CX - DX - EX
 | 
						|
                  RWORK( I ) = CABS1( BI ) +
 | 
						|
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
 | 
						|
     $                         CABS1( DX ) + CABS1( E( I ) )*
 | 
						|
     $                         CABS1( X( I+1, J ) )
 | 
						|
   40          CONTINUE
 | 
						|
               BI = B( N, J )
 | 
						|
               CX = E( N-1 )*X( N-1, J )
 | 
						|
               DX = D( N )*X( N, J )
 | 
						|
               WORK( N ) = BI - CX - DX
 | 
						|
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
 | 
						|
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute componentwise relative backward error from formula
 | 
						|
*
 | 
						|
*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
 | 
						|
*
 | 
						|
*        where abs(Z) is the componentwise absolute value of the matrix
 | 
						|
*        or vector Z.  If the i-th component of the denominator is less
 | 
						|
*        than SAFE2, then SAFE1 is added to the i-th components of the
 | 
						|
*        numerator and denominator before dividing.
 | 
						|
*
 | 
						|
         S = ZERO
 | 
						|
         DO 50 I = 1, N
 | 
						|
            IF( RWORK( I ).GT.SAFE2 ) THEN
 | 
						|
               S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
 | 
						|
            ELSE
 | 
						|
               S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
 | 
						|
     $             ( RWORK( I )+SAFE1 ) )
 | 
						|
            END IF
 | 
						|
   50    CONTINUE
 | 
						|
         BERR( J ) = S
 | 
						|
*
 | 
						|
*        Test stopping criterion. Continue iterating if
 | 
						|
*           1) The residual BERR(J) is larger than machine epsilon, and
 | 
						|
*           2) BERR(J) decreased by at least a factor of 2 during the
 | 
						|
*              last iteration, and
 | 
						|
*           3) At most ITMAX iterations tried.
 | 
						|
*
 | 
						|
         IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | 
						|
     $       COUNT.LE.ITMAX ) THEN
 | 
						|
*
 | 
						|
*           Update solution and try again.
 | 
						|
*
 | 
						|
            CALL CPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
 | 
						|
            CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
 | 
						|
            LSTRES = BERR( J )
 | 
						|
            COUNT = COUNT + 1
 | 
						|
            GO TO 20
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Bound error from formula
 | 
						|
*
 | 
						|
*        norm(X - XTRUE) / norm(X) .le. FERR =
 | 
						|
*        norm( abs(inv(A))*
 | 
						|
*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
 | 
						|
*
 | 
						|
*        where
 | 
						|
*          norm(Z) is the magnitude of the largest component of Z
 | 
						|
*          inv(A) is the inverse of A
 | 
						|
*          abs(Z) is the componentwise absolute value of the matrix or
 | 
						|
*             vector Z
 | 
						|
*          NZ is the maximum number of nonzeros in any row of A, plus 1
 | 
						|
*          EPS is machine epsilon
 | 
						|
*
 | 
						|
*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
 | 
						|
*        is incremented by SAFE1 if the i-th component of
 | 
						|
*        abs(A)*abs(X) + abs(B) is less than SAFE2.
 | 
						|
*
 | 
						|
         DO 60 I = 1, N
 | 
						|
            IF( RWORK( I ).GT.SAFE2 ) THEN
 | 
						|
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
 | 
						|
            ELSE
 | 
						|
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
 | 
						|
     $                      SAFE1
 | 
						|
            END IF
 | 
						|
   60    CONTINUE
 | 
						|
         IX = ISAMAX( N, RWORK, 1 )
 | 
						|
         FERR( J ) = RWORK( IX )
 | 
						|
*
 | 
						|
*        Estimate the norm of inv(A).
 | 
						|
*
 | 
						|
*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
 | 
						|
*
 | 
						|
*           m(i,j) =  abs(A(i,j)), i = j,
 | 
						|
*           m(i,j) = -abs(A(i,j)), i .ne. j,
 | 
						|
*
 | 
						|
*        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**H.
 | 
						|
*
 | 
						|
*        Solve M(L) * x = e.
 | 
						|
*
 | 
						|
         RWORK( 1 ) = ONE
 | 
						|
         DO 70 I = 2, N
 | 
						|
            RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
 | 
						|
   70    CONTINUE
 | 
						|
*
 | 
						|
*        Solve D * M(L)**H * x = b.
 | 
						|
*
 | 
						|
         RWORK( N ) = RWORK( N ) / DF( N )
 | 
						|
         DO 80 I = N - 1, 1, -1
 | 
						|
            RWORK( I ) = RWORK( I ) / DF( I ) +
 | 
						|
     $                   RWORK( I+1 )*ABS( EF( I ) )
 | 
						|
   80    CONTINUE
 | 
						|
*
 | 
						|
*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
 | 
						|
*
 | 
						|
         IX = ISAMAX( N, RWORK, 1 )
 | 
						|
         FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
 | 
						|
*
 | 
						|
*        Normalize error.
 | 
						|
*
 | 
						|
         LSTRES = ZERO
 | 
						|
         DO 90 I = 1, N
 | 
						|
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | 
						|
   90    CONTINUE
 | 
						|
         IF( LSTRES.NE.ZERO )
 | 
						|
     $      FERR( J ) = FERR( J ) / LSTRES
 | 
						|
*
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CPTRFS
 | 
						|
*
 | 
						|
      END
 |