2231 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2231 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static integer c__1 = 1;
 | |
| static integer c__5 = 5;
 | |
| static logical c_true = TRUE_;
 | |
| static logical c_false = FALSE_;
 | |
| 
 | |
| /* > \brief \b ZLATMT */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLATMT( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
 | |
| /*                          RANK, KL, KU, PACK, A, LDA, WORK, INFO ) */
 | |
| 
 | |
| /*       DOUBLE PRECISION   COND, DMAX */
 | |
| /*       INTEGER            INFO, KL, KU, LDA, M, MODE, N, RANK */
 | |
| /*       CHARACTER          DIST, PACK, SYM */
 | |
| /*       COMPLEX*16         A( LDA, * ), WORK( * ) */
 | |
| /*       DOUBLE PRECISION   D( * ) */
 | |
| /*       INTEGER            ISEED( 4 ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    ZLATMT generates random matrices with specified singular values */
 | |
| /* >    (or hermitian with specified eigenvalues) */
 | |
| /* >    for testing LAPACK programs. */
 | |
| /* > */
 | |
| /* >    ZLATMT operates by applying the following sequence of */
 | |
| /* >    operations: */
 | |
| /* > */
 | |
| /* >      Set the diagonal to D, where D may be input or */
 | |
| /* >         computed according to MODE, COND, DMAX, and SYM */
 | |
| /* >         as described below. */
 | |
| /* > */
 | |
| /* >      Generate a matrix with the appropriate band structure, by one */
 | |
| /* >         of two methods: */
 | |
| /* > */
 | |
| /* >      Method A: */
 | |
| /* >          Generate a dense M x N matrix by multiplying D on the left */
 | |
| /* >              and the right by random unitary matrices, then: */
 | |
| /* > */
 | |
| /* >          Reduce the bandwidth according to KL and KU, using */
 | |
| /* >              Householder transformations. */
 | |
| /* > */
 | |
| /* >      Method B: */
 | |
| /* >          Convert the bandwidth-0 (i.e., diagonal) matrix to a */
 | |
| /* >              bandwidth-1 matrix using Givens rotations, "chasing" */
 | |
| /* >              out-of-band elements back, much as in QR; then convert */
 | |
| /* >              the bandwidth-1 to a bandwidth-2 matrix, etc.  Note */
 | |
| /* >              that for reasonably small bandwidths (relative to M and */
 | |
| /* >              N) this requires less storage, as a dense matrix is not */
 | |
| /* >              generated.  Also, for hermitian or symmetric matrices, */
 | |
| /* >              only one triangle is generated. */
 | |
| /* > */
 | |
| /* >      Method A is chosen if the bandwidth is a large fraction of the */
 | |
| /* >          order of the matrix, and LDA is at least M (so a dense */
 | |
| /* >          matrix can be stored.)  Method B is chosen if the bandwidth */
 | |
| /* >          is small (< 1/2 N for hermitian or symmetric, < .3 N+M for */
 | |
| /* >          non-symmetric), or LDA is less than M and not less than the */
 | |
| /* >          bandwidth. */
 | |
| /* > */
 | |
| /* >      Pack the matrix if desired. Options specified by PACK are: */
 | |
| /* >         no packing */
 | |
| /* >         zero out upper half (if hermitian) */
 | |
| /* >         zero out lower half (if hermitian) */
 | |
| /* >         store the upper half columnwise (if hermitian or upper */
 | |
| /* >               triangular) */
 | |
| /* >         store the lower half columnwise (if hermitian or lower */
 | |
| /* >               triangular) */
 | |
| /* >         store the lower triangle in banded format (if hermitian or */
 | |
| /* >               lower triangular) */
 | |
| /* >         store the upper triangle in banded format (if hermitian or */
 | |
| /* >               upper triangular) */
 | |
| /* >         store the entire matrix in banded format */
 | |
| /* >      If Method B is chosen, and band format is specified, then the */
 | |
| /* >         matrix will be generated in the band format, so no repacking */
 | |
| /* >         will be necessary. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >           The number of rows of A. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           The number of columns of A. N must equal M if the matrix */
 | |
| /* >           is symmetric or hermitian (i.e., if SYM is not 'N') */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIST */
 | |
| /* > \verbatim */
 | |
| /* >          DIST is CHARACTER*1 */
 | |
| /* >           On entry, DIST specifies the type of distribution to be used */
 | |
| /* >           to generate the random eigen-/singular values. */
 | |
| /* >           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform ) */
 | |
| /* >           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
 | |
| /* >           'N' => NORMAL( 0, 1 )   ( 'N' for normal ) */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ISEED */
 | |
| /* > \verbatim */
 | |
| /* >          ISEED is INTEGER array, dimension ( 4 ) */
 | |
| /* >           On entry ISEED specifies the seed of the random number */
 | |
| /* >           generator. They should lie between 0 and 4095 inclusive, */
 | |
| /* >           and ISEED(4) should be odd. The random number generator */
 | |
| /* >           uses a linear congruential sequence limited to small */
 | |
| /* >           integers, and so should produce machine independent */
 | |
| /* >           random numbers. The values of ISEED are changed on */
 | |
| /* >           exit, and can be used in the next call to ZLATMT */
 | |
| /* >           to continue the same random number sequence. */
 | |
| /* >           Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SYM */
 | |
| /* > \verbatim */
 | |
| /* >          SYM is CHARACTER*1 */
 | |
| /* >           If SYM='H', the generated matrix is hermitian, with */
 | |
| /* >             eigenvalues specified by D, COND, MODE, and DMAX; they */
 | |
| /* >             may be positive, negative, or zero. */
 | |
| /* >           If SYM='P', the generated matrix is hermitian, with */
 | |
| /* >             eigenvalues (= singular values) specified by D, COND, */
 | |
| /* >             MODE, and DMAX; they will not be negative. */
 | |
| /* >           If SYM='N', the generated matrix is nonsymmetric, with */
 | |
| /* >             singular values specified by D, COND, MODE, and DMAX; */
 | |
| /* >             they will not be negative. */
 | |
| /* >           If SYM='S', the generated matrix is (complex) symmetric, */
 | |
| /* >             with singular values specified by D, COND, MODE, and */
 | |
| /* >             DMAX; they will not be negative. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension ( MIN( M, N ) ) */
 | |
| /* >           This array is used to specify the singular values or */
 | |
| /* >           eigenvalues of A (see SYM, above.)  If MODE=0, then D is */
 | |
| /* >           assumed to contain the singular/eigenvalues, otherwise */
 | |
| /* >           they will be computed according to MODE, COND, and DMAX, */
 | |
| /* >           and placed in D. */
 | |
| /* >           Modified if MODE is nonzero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODE */
 | |
| /* > \verbatim */
 | |
| /* >          MODE is INTEGER */
 | |
| /* >           On entry this describes how the singular/eigenvalues are to */
 | |
| /* >           be specified: */
 | |
| /* >           MODE = 0 means use D as input */
 | |
| /* >           MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND */
 | |
| /* >           MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND */
 | |
| /* >           MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1)) */
 | |
| /* >           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
 | |
| /* >           MODE = 5 sets D to random numbers in the range */
 | |
| /* >                    ( 1/COND , 1 ) such that their logarithms */
 | |
| /* >                    are uniformly distributed. */
 | |
| /* >           MODE = 6 set D to random numbers from same distribution */
 | |
| /* >                    as the rest of the matrix. */
 | |
| /* >           MODE < 0 has the same meaning as ABS(MODE), except that */
 | |
| /* >              the order of the elements of D is reversed. */
 | |
| /* >           Thus if MODE is positive, D has entries ranging from */
 | |
| /* >              1 to 1/COND, if negative, from 1/COND to 1, */
 | |
| /* >           If SYM='H', and MODE is neither 0, 6, nor -6, then */
 | |
| /* >              the elements of D will also be multiplied by a random */
 | |
| /* >              sign (i.e., +1 or -1.) */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COND */
 | |
| /* > \verbatim */
 | |
| /* >          COND is DOUBLE PRECISION */
 | |
| /* >           On entry, this is used as described under MODE above. */
 | |
| /* >           If used, it must be >= 1. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DMAX */
 | |
| /* > \verbatim */
 | |
| /* >          DMAX is DOUBLE PRECISION */
 | |
| /* >           If MODE is neither -6, 0 nor 6, the contents of D, as */
 | |
| /* >           computed according to MODE and COND, will be scaled by */
 | |
| /* >           DMAX / f2cmax(abs(D(i))); thus, the maximum absolute eigen- or */
 | |
| /* >           singular value (which is to say the norm) will be abs(DMAX). */
 | |
| /* >           Note that DMAX need not be positive: if DMAX is negative */
 | |
| /* >           (or zero), D will be scaled by a negative number (or zero). */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RANK */
 | |
| /* > \verbatim */
 | |
| /* >          RANK is INTEGER */
 | |
| /* >           The rank of matrix to be generated for modes 1,2,3 only. */
 | |
| /* >           D( RANK+1:N ) = 0. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >           This specifies the lower bandwidth of the  matrix. For */
 | |
| /* >           example, KL=0 implies upper triangular, KL=1 implies upper */
 | |
| /* >           Hessenberg, and KL being at least M-1 means that the matrix */
 | |
| /* >           has full lower bandwidth.  KL must equal KU if the matrix */
 | |
| /* >           is symmetric or hermitian. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >           This specifies the upper bandwidth of the  matrix. For */
 | |
| /* >           example, KU=0 implies lower triangular, KU=1 implies lower */
 | |
| /* >           Hessenberg, and KU being at least N-1 means that the matrix */
 | |
| /* >           has full upper bandwidth.  KL must equal KU if the matrix */
 | |
| /* >           is symmetric or hermitian. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PACK */
 | |
| /* > \verbatim */
 | |
| /* >          PACK is CHARACTER*1 */
 | |
| /* >           This specifies packing of matrix as follows: */
 | |
| /* >           'N' => no packing */
 | |
| /* >           'U' => zero out all subdiagonal entries (if symmetric */
 | |
| /* >                  or hermitian) */
 | |
| /* >           'L' => zero out all superdiagonal entries (if symmetric */
 | |
| /* >                  or hermitian) */
 | |
| /* >           'C' => store the upper triangle columnwise (only if the */
 | |
| /* >                  matrix is symmetric, hermitian, or upper triangular) */
 | |
| /* >           'R' => store the lower triangle columnwise (only if the */
 | |
| /* >                  matrix is symmetric, hermitian, or lower triangular) */
 | |
| /* >           'B' => store the lower triangle in band storage scheme */
 | |
| /* >                  (only if the matrix is symmetric, hermitian, or */
 | |
| /* >                  lower triangular) */
 | |
| /* >           'Q' => store the upper triangle in band storage scheme */
 | |
| /* >                  (only if the matrix is symmetric, hermitian, or */
 | |
| /* >                  upper triangular) */
 | |
| /* >           'Z' => store the entire matrix in band storage scheme */
 | |
| /* >                      (pivoting can be provided for by using this */
 | |
| /* >                      option to store A in the trailing rows of */
 | |
| /* >                      the allocated storage) */
 | |
| /* > */
 | |
| /* >           Using these options, the various LAPACK packed and banded */
 | |
| /* >           storage schemes can be obtained: */
 | |
| /* >           GB                    - use 'Z' */
 | |
| /* >           PB, SB, HB, or TB     - use 'B' or 'Q' */
 | |
| /* >           PP, SP, HB, or TP     - use 'C' or 'R' */
 | |
| /* > */
 | |
| /* >           If two calls to ZLATMT differ only in the PACK parameter, */
 | |
| /* >           they will generate mathematically equivalent matrices. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension ( LDA, N ) */
 | |
| /* >           On exit A is the desired test matrix.  A is first generated */
 | |
| /* >           in full (unpacked) form, and then packed, if so specified */
 | |
| /* >           by PACK.  Thus, the first M elements of the first N */
 | |
| /* >           columns will always be modified.  If PACK specifies a */
 | |
| /* >           packed or banded storage scheme, all LDA elements of the */
 | |
| /* >           first N columns will be modified; the elements of the */
 | |
| /* >           array which do not correspond to elements of the generated */
 | |
| /* >           matrix are set to zero. */
 | |
| /* >           Modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >           LDA specifies the first dimension of A as declared in the */
 | |
| /* >           calling program.  If PACK='N', 'U', 'L', 'C', or 'R', then */
 | |
| /* >           LDA must be at least M.  If PACK='B' or 'Q', then LDA must */
 | |
| /* >           be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)). */
 | |
| /* >           If PACK='Z', LDA must be large enough to hold the packed */
 | |
| /* >           array: MIN( KU, N-1) + MIN( KL, M-1) + 1. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension ( 3*MAX( N, M ) ) */
 | |
| /* >           Workspace. */
 | |
| /* >           Modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           Error code.  On exit, INFO will be set to one of the */
 | |
| /* >           following values: */
 | |
| /* >             0 => normal return */
 | |
| /* >            -1 => M negative or unequal to N and SYM='S', 'H', or 'P' */
 | |
| /* >            -2 => N negative */
 | |
| /* >            -3 => DIST illegal string */
 | |
| /* >            -5 => SYM illegal string */
 | |
| /* >            -7 => MODE not in range -6 to 6 */
 | |
| /* >            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
 | |
| /* >           -10 => KL negative */
 | |
| /* >           -11 => KU negative, or SYM is not 'N' and KU is not equal to */
 | |
| /* >                  KL */
 | |
| /* >           -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N'; */
 | |
| /* >                  or PACK='C' or 'Q' and SYM='N' and KL is not zero; */
 | |
| /* >                  or PACK='R' or 'B' and SYM='N' and KU is not zero; */
 | |
| /* >                  or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not */
 | |
| /* >                  N. */
 | |
| /* >           -14 => LDA is less than M, or PACK='Z' and LDA is less than */
 | |
| /* >                  MIN(KU,N-1) + MIN(KL,M-1) + 1. */
 | |
| /* >            1  => Error return from DLATM7 */
 | |
| /* >            2  => Cannot scale to DMAX (f2cmax. sing. value is 0) */
 | |
| /* >            3  => Error return from ZLAGGE, ZLAGHE or ZLAGSY */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlatmt_(integer *m, integer *n, char *dist, integer *
 | |
| 	iseed, char *sym, doublereal *d__, integer *mode, doublereal *cond, 
 | |
| 	doublereal *dmax__, integer *rank, integer *kl, integer *ku, char *
 | |
| 	pack, doublecomplex *a, integer *lda, doublecomplex *work, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 | |
|     doublereal d__1, d__2, d__3;
 | |
|     doublecomplex z__1, z__2, z__3;
 | |
|     logical L__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ilda, icol;
 | |
|     doublereal temp;
 | |
|     logical csym;
 | |
|     integer irow, isym;
 | |
|     doublecomplex c__;
 | |
|     integer i__, j, k;
 | |
|     doublecomplex s;
 | |
|     doublereal alpha, angle, realc;
 | |
|     integer ipack, ioffg;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo, idist, mnmin;
 | |
|     doublecomplex extra;
 | |
|     integer iskew;
 | |
|     doublecomplex dummy, ztemp;
 | |
|     extern /* Subroutine */ void dlatm7_(integer *, doublereal *, integer *, 
 | |
| 	    integer *, integer *, doublereal *, integer *, integer *, integer 
 | |
| 	    *);
 | |
|     integer ic, jc, nc, il;
 | |
|     doublecomplex ct;
 | |
|     integer iendch, ir, jr, ipackg, mr, minlda;
 | |
|     extern doublereal dlarnd_(integer *, integer *);
 | |
|     doublecomplex st;
 | |
|     extern /* Subroutine */ void zlagge_(integer *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, doublecomplex *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *), zlaghe_(integer *, integer *, 
 | |
| 	    doublereal *, doublecomplex *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     integer ioffst, irsign;
 | |
|     logical givens, iltemp;
 | |
|     //extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *, 
 | |
|     extern doublecomplex zlarnd_(integer *, 
 | |
| 	    integer *);
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
 | |
| 	    doublecomplex *, doublecomplex *);
 | |
|     logical ilextr;
 | |
|     extern /* Subroutine */ void zlagsy_(integer *, integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *, integer *, doublecomplex *, integer *)
 | |
| 	    ;
 | |
|     integer ir1, ir2, isympk;
 | |
|     logical topdwn;
 | |
|     extern /* Subroutine */ void zlarot_(logical *, logical *, logical *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *);
 | |
|     integer jch, llb, jkl, jku, uub;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     1)      Decode and Test the input parameters. */
 | |
| /*             Initialize flags & seed. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iseed;
 | |
|     --d__;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Decode DIST */
 | |
| 
 | |
|     if (lsame_(dist, "U")) {
 | |
| 	idist = 1;
 | |
|     } else if (lsame_(dist, "S")) {
 | |
| 	idist = 2;
 | |
|     } else if (lsame_(dist, "N")) {
 | |
| 	idist = 3;
 | |
|     } else {
 | |
| 	idist = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode SYM */
 | |
| 
 | |
|     if (lsame_(sym, "N")) {
 | |
| 	isym = 1;
 | |
| 	irsign = 0;
 | |
| 	csym = FALSE_;
 | |
|     } else if (lsame_(sym, "P")) {
 | |
| 	isym = 2;
 | |
| 	irsign = 0;
 | |
| 	csym = FALSE_;
 | |
|     } else if (lsame_(sym, "S")) {
 | |
| 	isym = 2;
 | |
| 	irsign = 0;
 | |
| 	csym = TRUE_;
 | |
|     } else if (lsame_(sym, "H")) {
 | |
| 	isym = 2;
 | |
| 	irsign = 1;
 | |
| 	csym = FALSE_;
 | |
|     } else {
 | |
| 	isym = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode PACK */
 | |
| 
 | |
|     isympk = 0;
 | |
|     if (lsame_(pack, "N")) {
 | |
| 	ipack = 0;
 | |
|     } else if (lsame_(pack, "U")) {
 | |
| 	ipack = 1;
 | |
| 	isympk = 1;
 | |
|     } else if (lsame_(pack, "L")) {
 | |
| 	ipack = 2;
 | |
| 	isympk = 1;
 | |
|     } else if (lsame_(pack, "C")) {
 | |
| 	ipack = 3;
 | |
| 	isympk = 2;
 | |
|     } else if (lsame_(pack, "R")) {
 | |
| 	ipack = 4;
 | |
| 	isympk = 3;
 | |
|     } else if (lsame_(pack, "B")) {
 | |
| 	ipack = 5;
 | |
| 	isympk = 3;
 | |
|     } else if (lsame_(pack, "Q")) {
 | |
| 	ipack = 6;
 | |
| 	isympk = 2;
 | |
|     } else if (lsame_(pack, "Z")) {
 | |
| 	ipack = 7;
 | |
|     } else {
 | |
| 	ipack = -1;
 | |
|     }
 | |
| 
 | |
| /*     Set certain internal parameters */
 | |
| 
 | |
|     mnmin = f2cmin(*m,*n);
 | |
| /* Computing MIN */
 | |
|     i__1 = *kl, i__2 = *m - 1;
 | |
|     llb = f2cmin(i__1,i__2);
 | |
| /* Computing MIN */
 | |
|     i__1 = *ku, i__2 = *n - 1;
 | |
|     uub = f2cmin(i__1,i__2);
 | |
| /* Computing MIN */
 | |
|     i__1 = *m, i__2 = *n + llb;
 | |
|     mr = f2cmin(i__1,i__2);
 | |
| /* Computing MIN */
 | |
|     i__1 = *n, i__2 = *m + uub;
 | |
|     nc = f2cmin(i__1,i__2);
 | |
| 
 | |
|     if (ipack == 5 || ipack == 6) {
 | |
| 	minlda = uub + 1;
 | |
|     } else if (ipack == 7) {
 | |
| 	minlda = llb + uub + 1;
 | |
|     } else {
 | |
| 	minlda = *m;
 | |
|     }
 | |
| 
 | |
| /*     Use Givens rotation method if bandwidth small enough, */
 | |
| /*     or if LDA is too small to store the matrix unpacked. */
 | |
| 
 | |
|     givens = FALSE_;
 | |
|     if (isym == 1) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = mr + nc;
 | |
| 	if ((doublereal) (llb + uub) < (doublereal) f2cmax(i__1,i__2) * .3) {
 | |
| 	    givens = TRUE_;
 | |
| 	}
 | |
|     } else {
 | |
| 	if (llb << 1 < *m) {
 | |
| 	    givens = TRUE_;
 | |
| 	}
 | |
|     }
 | |
|     if (*lda < *m && *lda >= minlda) {
 | |
| 	givens = TRUE_;
 | |
|     }
 | |
| 
 | |
| /*     Set INFO if an error */
 | |
| 
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*m != *n && isym != 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (idist == -1) {
 | |
| 	*info = -3;
 | |
|     } else if (isym == -1) {
 | |
| 	*info = -5;
 | |
|     } else if (abs(*mode) > 6) {
 | |
| 	*info = -7;
 | |
|     } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) {
 | |
| 	*info = -8;
 | |
|     } else if (*kl < 0) {
 | |
| 	*info = -10;
 | |
|     } else if (*ku < 0 || isym != 1 && *kl != *ku) {
 | |
| 	*info = -11;
 | |
|     } else if (ipack == -1 || isympk == 1 && isym == 1 || isympk == 2 && isym 
 | |
| 	    == 1 && *kl > 0 || isympk == 3 && isym == 1 && *ku > 0 || isympk 
 | |
| 	    != 0 && *m != *n) {
 | |
| 	*info = -12;
 | |
|     } else if (*lda < f2cmax(1,minlda)) {
 | |
| 	*info = -14;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZLATMT", &i__1, 6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize random number generator */
 | |
| 
 | |
|     for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 	iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
 | |
| /* L100: */
 | |
|     }
 | |
| 
 | |
|     if (iseed[4] % 2 != 1) {
 | |
| 	++iseed[4];
 | |
|     }
 | |
| 
 | |
| /*     2)      Set up D  if indicated. */
 | |
| 
 | |
| /*             Compute D according to COND and MODE */
 | |
| 
 | |
|     dlatm7_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, rank, &
 | |
| 	    iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = 1;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Choose Top-Down if D is (apparently) increasing, */
 | |
| /*     Bottom-Up if D is (apparently) decreasing. */
 | |
| 
 | |
|     if (abs(d__[1]) <= (d__1 = d__[*rank], abs(d__1))) {
 | |
| 	topdwn = TRUE_;
 | |
|     } else {
 | |
| 	topdwn = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (*mode != 0 && abs(*mode) != 6) {
 | |
| 
 | |
| /*        Scale by DMAX */
 | |
| 
 | |
| 	temp = abs(d__[1]);
 | |
| 	i__1 = *rank;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    d__2 = temp, d__3 = (d__1 = d__[i__], abs(d__1));
 | |
| 	    temp = f2cmax(d__2,d__3);
 | |
| /* L110: */
 | |
| 	}
 | |
| 
 | |
| 	if (temp > 0.) {
 | |
| 	    alpha = *dmax__ / temp;
 | |
| 	} else {
 | |
| 	    *info = 2;
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
| 	dscal_(rank, &alpha, &d__[1], &c__1);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     zlaset_("Full", lda, n, &c_b1, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*     3)      Generate Banded Matrix using Givens rotations. */
 | |
| /*             Also the special case of UUB=LLB=0 */
 | |
| 
 | |
| /*               Compute Addressing constants to cover all */
 | |
| /*               storage formats.  Whether GE, HE, SY, GB, HB, or SB, */
 | |
| /*               upper or lower triangle or both, */
 | |
| /*               the (i,j)-th element is in */
 | |
| /*               A( i - ISKEW*j + IOFFST, j ) */
 | |
| 
 | |
|     if (ipack > 4) {
 | |
| 	ilda = *lda - 1;
 | |
| 	iskew = 1;
 | |
| 	if (ipack > 5) {
 | |
| 	    ioffst = uub + 1;
 | |
| 	} else {
 | |
| 	    ioffst = 1;
 | |
| 	}
 | |
|     } else {
 | |
| 	ilda = *lda;
 | |
| 	iskew = 0;
 | |
| 	ioffst = 0;
 | |
|     }
 | |
| 
 | |
| /*     IPACKG is the format that the matrix is generated in. If this is */
 | |
| /*     different from IPACK, then the matrix must be repacked at the */
 | |
| /*     end.  It also signals how to compute the norm, for scaling. */
 | |
| 
 | |
|     ipackg = 0;
 | |
| 
 | |
| /*     Diagonal Matrix -- We are done, unless it */
 | |
| /*     is to be stored HP/SP/PP/TP (PACK='R' or 'C') */
 | |
| 
 | |
|     if (llb == 0 && uub == 0) {
 | |
| 	i__1 = mnmin;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
 | |
| 	    i__3 = j;
 | |
| 	    z__1.r = d__[i__3], z__1.i = 0.;
 | |
| 	    a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| /* L120: */
 | |
| 	}
 | |
| 
 | |
| 	if (ipack <= 2 || ipack >= 5) {
 | |
| 	    ipackg = ipack;
 | |
| 	}
 | |
| 
 | |
|     } else if (givens) {
 | |
| 
 | |
| /*        Check whether to use Givens rotations, */
 | |
| /*        Householder transformations, or nothing. */
 | |
| 
 | |
| 	if (isym == 1) {
 | |
| 
 | |
| /*           Non-symmetric -- A = U D V */
 | |
| 
 | |
| 	    if (ipack > 4) {
 | |
| 		ipackg = ipack;
 | |
| 	    } else {
 | |
| 		ipackg = 0;
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = mnmin;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = (1 - iskew) * j + ioffst + j * a_dim1;
 | |
| 		i__3 = j;
 | |
| 		z__1.r = d__[i__3], z__1.i = 0.;
 | |
| 		a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (topdwn) {
 | |
| 		jkl = 0;
 | |
| 		i__1 = uub;
 | |
| 		for (jku = 1; jku <= i__1; ++jku) {
 | |
| 
 | |
| /*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU */
 | |
| 
 | |
| /*                 Last row actually rotated is M */
 | |
| /*                 Last column actually rotated is MIN( M+JKU, N ) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *m + jku;
 | |
| 		    i__2 = f2cmin(i__3,*n) + jkl - 1;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_( &c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 			i__3 = 1, i__4 = jr - jkl;
 | |
| 			icol = f2cmax(i__3,i__4);
 | |
| 			if (jr < *m) {
 | |
| /* Computing MIN */
 | |
| 			    i__3 = *n, i__4 = jr + jku;
 | |
| 			    il = f2cmin(i__3,i__4) + 1 - icol;
 | |
| 			    L__1 = jr > jkl;
 | |
| 			    zlarot_(&c_true, &L__1, &c_false, &il, &c__, &s, &
 | |
| 				    a[jr - iskew * icol + ioffst + icol * 
 | |
| 				    a_dim1], &ilda, &extra, &dummy);
 | |
| 			}
 | |
| 
 | |
| /*                    Chase "EXTRA" back up */
 | |
| 
 | |
| 			ir = jr;
 | |
| 			ic = icol;
 | |
| 			i__3 = -jkl - jku;
 | |
| 			for (jch = jr - jkl; i__3 < 0 ? jch >= 1 : jch <= 1; 
 | |
| 				jch += i__3) {
 | |
| 			    if (ir < *m) {
 | |
| 				zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst 
 | |
| 					+ (ic + 1) * a_dim1], &extra, &realc, 
 | |
| 					&s, &dummy);
 | |
| 				d__1 = dlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = d__1, dummy.i = 0.;
 | |
| 				z__2.r = realc * dummy.r, z__2.i = realc * 
 | |
| 					dummy.i;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__3.r = -s.r, z__3.i = -s.i;
 | |
| 				z__2.r = z__3.r * dummy.r - z__3.i * dummy.i, 
 | |
| 					z__2.i = z__3.r * dummy.i + z__3.i * 
 | |
| 					dummy.r;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| 			    }
 | |
| /* Computing MAX */
 | |
| 			    i__4 = 1, i__5 = jch - jku;
 | |
| 			    irow = f2cmax(i__4,i__5);
 | |
| 			    il = ir + 2 - irow;
 | |
| 			    ztemp.r = 0., ztemp.i = 0.;
 | |
| 			    iltemp = jch > jku;
 | |
| 			    zlarot_(&c_false, &iltemp, &c_true, &il, &c__, &s,
 | |
| 				     &a[irow - iskew * ic + ioffst + ic * 
 | |
| 				    a_dim1], &ilda, &ztemp, &extra);
 | |
| 			    if (iltemp) {
 | |
| 				zlartg_(&a[irow + 1 - iskew * (ic + 1) + 
 | |
| 					ioffst + (ic + 1) * a_dim1], &ztemp, &
 | |
| 					realc, &s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_( &c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__2.r = realc * dummy.r, z__2.i = realc * 
 | |
| 					dummy.i;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__3.r = -s.r, z__3.i = -s.i;
 | |
| 				z__2.r = z__3.r * dummy.r - z__3.i * dummy.i, 
 | |
| 					z__2.i = z__3.r * dummy.i + z__3.i * 
 | |
| 					dummy.r;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| 
 | |
| /* Computing MAX */
 | |
| 				i__4 = 1, i__5 = jch - jku - jkl;
 | |
| 				icol = f2cmax(i__4,i__5);
 | |
| 				il = ic + 2 - icol;
 | |
| 				extra.r = 0., extra.i = 0.;
 | |
| 				L__1 = jch > jku + jkl;
 | |
| 				zlarot_(&c_true, &L__1, &c_true, &il, &c__, &
 | |
| 					s, &a[irow - iskew * icol + ioffst + 
 | |
| 					icol * a_dim1], &ilda, &extra, &ztemp)
 | |
| 					;
 | |
| 				ic = icol;
 | |
| 				ir = irow;
 | |
| 			    }
 | |
| /* L140: */
 | |
| 			}
 | |
| /* L150: */
 | |
| 		    }
 | |
| /* L160: */
 | |
| 		}
 | |
| 
 | |
| 		jku = uub;
 | |
| 		i__1 = llb;
 | |
| 		for (jkl = 1; jkl <= i__1; ++jkl) {
 | |
| 
 | |
| /*                 Transform from bandwidth JKL-1, JKU to JKL, JKU */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *n + jkl;
 | |
| 		    i__2 = f2cmin(i__3,*m) + jku - 1;
 | |
| 		    for (jc = 1; jc <= i__2; ++jc) {
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 			i__3 = 1, i__4 = jc - jku;
 | |
| 			irow = f2cmax(i__3,i__4);
 | |
| 			if (jc < *n) {
 | |
| /* Computing MIN */
 | |
| 			    i__3 = *m, i__4 = jc + jkl;
 | |
| 			    il = f2cmin(i__3,i__4) + 1 - irow;
 | |
| 			    L__1 = jc > jku;
 | |
| 			    zlarot_(&c_false, &L__1, &c_false, &il, &c__, &s, 
 | |
| 				    &a[irow - iskew * jc + ioffst + jc * 
 | |
| 				    a_dim1], &ilda, &extra, &dummy);
 | |
| 			}
 | |
| 
 | |
| /*                    Chase "EXTRA" back up */
 | |
| 
 | |
| 			ic = jc;
 | |
| 			ir = irow;
 | |
| 			i__3 = -jkl - jku;
 | |
| 			for (jch = jc - jku; i__3 < 0 ? jch >= 1 : jch <= 1; 
 | |
| 				jch += i__3) {
 | |
| 			    if (ic < *n) {
 | |
| 				zlartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst 
 | |
| 					+ (ic + 1) * a_dim1], &extra, &realc, 
 | |
| 					&s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__2.r = realc * dummy.r, z__2.i = realc * 
 | |
| 					dummy.i;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__3.r = -s.r, z__3.i = -s.i;
 | |
| 				z__2.r = z__3.r * dummy.r - z__3.i * dummy.i, 
 | |
| 					z__2.i = z__3.r * dummy.i + z__3.i * 
 | |
| 					dummy.r;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| 			    }
 | |
| /* Computing MAX */
 | |
| 			    i__4 = 1, i__5 = jch - jkl;
 | |
| 			    icol = f2cmax(i__4,i__5);
 | |
| 			    il = ic + 2 - icol;
 | |
| 			    ztemp.r = 0., ztemp.i = 0.;
 | |
| 			    iltemp = jch > jkl;
 | |
| 			    zlarot_(&c_true, &iltemp, &c_true, &il, &c__, &s, 
 | |
| 				    &a[ir - iskew * icol + ioffst + icol * 
 | |
| 				    a_dim1], &ilda, &ztemp, &extra);
 | |
| 			    if (iltemp) {
 | |
| 				zlartg_(&a[ir + 1 - iskew * (icol + 1) + 
 | |
| 					ioffst + (icol + 1) * a_dim1], &ztemp,
 | |
| 					 &realc, &s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__2.r = realc * dummy.r, z__2.i = realc * 
 | |
| 					dummy.i;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__3.r = -s.r, z__3.i = -s.i;
 | |
| 				z__2.r = z__3.r * dummy.r - z__3.i * dummy.i, 
 | |
| 					z__2.i = z__3.r * dummy.i + z__3.i * 
 | |
| 					dummy.r;
 | |
| 				d_cnjg(&z__1, &z__2);
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 				i__4 = 1, i__5 = jch - jkl - jku;
 | |
| 				irow = f2cmax(i__4,i__5);
 | |
| 				il = ir + 2 - irow;
 | |
| 				extra.r = 0., extra.i = 0.;
 | |
| 				L__1 = jch > jkl + jku;
 | |
| 				zlarot_(&c_false, &L__1, &c_true, &il, &c__, &
 | |
| 					s, &a[irow - iskew * icol + ioffst + 
 | |
| 					icol * a_dim1], &ilda, &extra, &ztemp)
 | |
| 					;
 | |
| 				ic = icol;
 | |
| 				ir = irow;
 | |
| 			    }
 | |
| /* L170: */
 | |
| 			}
 | |
| /* L180: */
 | |
| 		    }
 | |
| /* L190: */
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              Bottom-Up -- Start at the bottom right. */
 | |
| 
 | |
| 		jkl = 0;
 | |
| 		i__1 = uub;
 | |
| 		for (jku = 1; jku <= i__1; ++jku) {
 | |
| 
 | |
| /*                 Transform from bandwidth JKL, JKU-1 to JKL, JKU */
 | |
| 
 | |
| /*                 First row actually rotated is M */
 | |
| /*                 First column actually rotated is MIN( M+JKU, N ) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__2 = *m, i__3 = *n + jkl;
 | |
| 		    iendch = f2cmin(i__2,i__3) - 1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = *m + jku;
 | |
| 		    i__3 = 1 - jkl;
 | |
| 		    for (jc = f2cmin(i__2,*n) - 1; jc >= i__3; --jc) {
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_( &c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_( &c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 			i__2 = 1, i__4 = jc - jku + 1;
 | |
| 			irow = f2cmax(i__2,i__4);
 | |
| 			if (jc > 0) {
 | |
| /* Computing MIN */
 | |
| 			    i__2 = *m, i__4 = jc + jkl + 1;
 | |
| 			    il = f2cmin(i__2,i__4) + 1 - irow;
 | |
| 			    L__1 = jc + jkl < *m;
 | |
| 			    zlarot_(&c_false, &c_false, &L__1, &il, &c__, &s, 
 | |
| 				    &a[irow - iskew * jc + ioffst + jc * 
 | |
| 				    a_dim1], &ilda, &dummy, &extra);
 | |
| 			}
 | |
| 
 | |
| /*                    Chase "EXTRA" back down */
 | |
| 
 | |
| 			ic = jc;
 | |
| 			i__2 = iendch;
 | |
| 			i__4 = jkl + jku;
 | |
| 			for (jch = jc + jkl; i__4 < 0 ? jch >= i__2 : jch <= 
 | |
| 				i__2; jch += i__4) {
 | |
| 			    ilextr = ic > 0;
 | |
| 			    if (ilextr) {
 | |
| 				zlartg_(&a[jch - iskew * ic + ioffst + ic * 
 | |
| 					a_dim1], &extra, &realc, &s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__1.r = realc * dummy.r, z__1.i = realc * 
 | |
| 					dummy.i;
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__1.r = s.r * dummy.r - s.i * dummy.i, 
 | |
| 					z__1.i = s.r * dummy.i + s.i * 
 | |
| 					dummy.r;
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| 			    }
 | |
| 			    ic = f2cmax(1,ic);
 | |
| /* Computing MIN */
 | |
| 			    i__5 = *n - 1, i__6 = jch + jku;
 | |
| 			    icol = f2cmin(i__5,i__6);
 | |
| 			    iltemp = jch + jku < *n;
 | |
| 			    ztemp.r = 0., ztemp.i = 0.;
 | |
| 			    i__5 = icol + 2 - ic;
 | |
| 			    zlarot_(&c_true, &ilextr, &iltemp, &i__5, &c__, &
 | |
| 				    s, &a[jch - iskew * ic + ioffst + ic * 
 | |
| 				    a_dim1], &ilda, &extra, &ztemp);
 | |
| 			    if (iltemp) {
 | |
| 				zlartg_(&a[jch - iskew * icol + ioffst + icol 
 | |
| 					* a_dim1], &ztemp, &realc, &s, &dummy)
 | |
| 					;
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__1.r = realc * dummy.r, z__1.i = realc * 
 | |
| 					dummy.i;
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__1.r = s.r * dummy.r - s.i * dummy.i, 
 | |
| 					z__1.i = s.r * dummy.i + s.i * 
 | |
| 					dummy.r;
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MIN */
 | |
| 				i__5 = iendch, i__6 = jch + jkl + jku;
 | |
| 				il = f2cmin(i__5,i__6) + 2 - jch;
 | |
| 				extra.r = 0., extra.i = 0.;
 | |
| 				L__1 = jch + jkl + jku <= iendch;
 | |
| 				zlarot_(&c_false, &c_true, &L__1, &il, &c__, &
 | |
| 					s, &a[jch - iskew * icol + ioffst + 
 | |
| 					icol * a_dim1], &ilda, &ztemp, &extra)
 | |
| 					;
 | |
| 				ic = icol;
 | |
| 			    }
 | |
| /* L200: */
 | |
| 			}
 | |
| /* L210: */
 | |
| 		    }
 | |
| /* L220: */
 | |
| 		}
 | |
| 
 | |
| 		jku = uub;
 | |
| 		i__1 = llb;
 | |
| 		for (jkl = 1; jkl <= i__1; ++jkl) {
 | |
| 
 | |
| /*                 Transform from bandwidth JKL-1, JKU to JKL, JKU */
 | |
| 
 | |
| /*                 First row actually rotated is MIN( N+JKL, M ) */
 | |
| /*                 First column actually rotated is N */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *n, i__4 = *m + jku;
 | |
| 		    iendch = f2cmin(i__3,i__4) - 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *n + jkl;
 | |
| 		    i__4 = 1 - jku;
 | |
| 		    for (jr = f2cmin(i__3,*m) - 1; jr >= i__4; --jr) {
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 			i__3 = 1, i__2 = jr - jkl + 1;
 | |
| 			icol = f2cmax(i__3,i__2);
 | |
| 			if (jr > 0) {
 | |
| /* Computing MIN */
 | |
| 			    i__3 = *n, i__2 = jr + jku + 1;
 | |
| 			    il = f2cmin(i__3,i__2) + 1 - icol;
 | |
| 			    L__1 = jr + jku < *n;
 | |
| 			    zlarot_(&c_true, &c_false, &L__1, &il, &c__, &s, &
 | |
| 				    a[jr - iskew * icol + ioffst + icol * 
 | |
| 				    a_dim1], &ilda, &dummy, &extra);
 | |
| 			}
 | |
| 
 | |
| /*                    Chase "EXTRA" back down */
 | |
| 
 | |
| 			ir = jr;
 | |
| 			i__3 = iendch;
 | |
| 			i__2 = jkl + jku;
 | |
| 			for (jch = jr + jku; i__2 < 0 ? jch >= i__3 : jch <= 
 | |
| 				i__3; jch += i__2) {
 | |
| 			    ilextr = ir > 0;
 | |
| 			    if (ilextr) {
 | |
| 				zlartg_(&a[ir - iskew * jch + ioffst + jch * 
 | |
| 					a_dim1], &extra, &realc, &s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_( &c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__1.r = realc * dummy.r, z__1.i = realc * 
 | |
| 					dummy.i;
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__1.r = s.r * dummy.r - s.i * dummy.i, 
 | |
| 					z__1.i = s.r * dummy.i + s.i * 
 | |
| 					dummy.r;
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| 			    }
 | |
| 			    ir = f2cmax(1,ir);
 | |
| /* Computing MIN */
 | |
| 			    i__5 = *m - 1, i__6 = jch + jkl;
 | |
| 			    irow = f2cmin(i__5,i__6);
 | |
| 			    iltemp = jch + jkl < *m;
 | |
| 			    ztemp.r = 0., ztemp.i = 0.;
 | |
| 			    i__5 = irow + 2 - ir;
 | |
| 			    zlarot_(&c_false, &ilextr, &iltemp, &i__5, &c__, &
 | |
| 				    s, &a[ir - iskew * jch + ioffst + jch * 
 | |
| 				    a_dim1], &ilda, &extra, &ztemp);
 | |
| 			    if (iltemp) {
 | |
| 				zlartg_(&a[irow - iskew * jch + ioffst + jch *
 | |
| 					 a_dim1], &ztemp, &realc, &s, &dummy);
 | |
| 				//zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 				z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 				dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 				z__1.r = realc * dummy.r, z__1.i = realc * 
 | |
| 					dummy.i;
 | |
| 				c__.r = z__1.r, c__.i = z__1.i;
 | |
| 				z__1.r = s.r * dummy.r - s.i * dummy.i, 
 | |
| 					z__1.i = s.r * dummy.i + s.i * 
 | |
| 					dummy.r;
 | |
| 				s.r = z__1.r, s.i = z__1.i;
 | |
| /* Computing MIN */
 | |
| 				i__5 = iendch, i__6 = jch + jkl + jku;
 | |
| 				il = f2cmin(i__5,i__6) + 2 - jch;
 | |
| 				extra.r = 0., extra.i = 0.;
 | |
| 				L__1 = jch + jkl + jku <= iendch;
 | |
| 				zlarot_(&c_true, &c_true, &L__1, &il, &c__, &
 | |
| 					s, &a[irow - iskew * jch + ioffst + 
 | |
| 					jch * a_dim1], &ilda, &ztemp, &extra);
 | |
| 				ir = irow;
 | |
| 			    }
 | |
| /* L230: */
 | |
| 			}
 | |
| /* L240: */
 | |
| 		    }
 | |
| /* L250: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Symmetric -- A = U D U' */
 | |
| /*           Hermitian -- A = U D U* */
 | |
| 
 | |
| 	    ipackg = ipack;
 | |
| 	    ioffg = ioffst;
 | |
| 
 | |
| 	    if (topdwn) {
 | |
| 
 | |
| /*              Top-Down -- Generate Upper triangle only */
 | |
| 
 | |
| 		if (ipack >= 5) {
 | |
| 		    ipackg = 6;
 | |
| 		    ioffg = uub + 1;
 | |
| 		} else {
 | |
| 		    ipackg = 1;
 | |
| 		}
 | |
| 
 | |
| 		i__1 = mnmin;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
 | |
| 		    i__2 = j;
 | |
| 		    z__1.r = d__[i__2], z__1.i = 0.;
 | |
| 		    a[i__4].r = z__1.r, a[i__4].i = z__1.i;
 | |
| /* L260: */
 | |
| 		}
 | |
| 
 | |
| 		i__1 = uub;
 | |
| 		for (k = 1; k <= i__1; ++k) {
 | |
| 		    i__4 = *n - 1;
 | |
| 		    for (jc = 1; jc <= i__4; ++jc) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = 1, i__3 = jc - k;
 | |
| 			irow = f2cmax(i__2,i__3);
 | |
| /* Computing MIN */
 | |
| 			i__2 = jc + 1, i__3 = k + 2;
 | |
| 			il = f2cmin(i__2,i__3);
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			i__2 = jc - iskew * (jc + 1) + ioffg + (jc + 1) * 
 | |
| 				a_dim1;
 | |
| 			ztemp.r = a[i__2].r, ztemp.i = a[i__2].i;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_( &c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| 			if (csym) {
 | |
| 			    ct.r = c__.r, ct.i = c__.i;
 | |
| 			    st.r = s.r, st.i = s.i;
 | |
| 			} else {
 | |
| 			    d_cnjg(&z__1, &ztemp);
 | |
| 			    ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 			    d_cnjg(&z__1, &c__);
 | |
| 			    ct.r = z__1.r, ct.i = z__1.i;
 | |
| 			    d_cnjg(&z__1, &s);
 | |
| 			    st.r = z__1.r, st.i = z__1.i;
 | |
| 			}
 | |
| 			L__1 = jc > k;
 | |
| 			zlarot_(&c_false, &L__1, &c_true, &il, &c__, &s, &a[
 | |
| 				irow - iskew * jc + ioffg + jc * a_dim1], &
 | |
| 				ilda, &extra, &ztemp);
 | |
| /* Computing MIN */
 | |
| 			i__3 = k, i__5 = *n - jc;
 | |
| 			i__2 = f2cmin(i__3,i__5) + 1;
 | |
| 			zlarot_(&c_true, &c_true, &c_false, &i__2, &ct, &st, &
 | |
| 				a[(1 - iskew) * jc + ioffg + jc * a_dim1], &
 | |
| 				ilda, &ztemp, &dummy);
 | |
| 
 | |
| /*                    Chase EXTRA back up the matrix */
 | |
| 
 | |
| 			icol = jc;
 | |
| 			i__2 = -k;
 | |
| 			for (jch = jc - k; i__2 < 0 ? jch >= 1 : jch <= 1; 
 | |
| 				jch += i__2) {
 | |
| 			    zlartg_(&a[jch + 1 - iskew * (icol + 1) + ioffg + 
 | |
| 				    (icol + 1) * a_dim1], &extra, &realc, &s, 
 | |
| 				    &dummy);
 | |
| 			    //zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 			    z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 			    dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 			    z__2.r = realc * dummy.r, z__2.i = realc * 
 | |
| 				    dummy.i;
 | |
| 			    d_cnjg(&z__1, &z__2);
 | |
| 			    c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			    z__3.r = -s.r, z__3.i = -s.i;
 | |
| 			    z__2.r = z__3.r * dummy.r - z__3.i * dummy.i, 
 | |
| 				    z__2.i = z__3.r * dummy.i + z__3.i * 
 | |
| 				    dummy.r;
 | |
| 			    d_cnjg(&z__1, &z__2);
 | |
| 			    s.r = z__1.r, s.i = z__1.i;
 | |
| 			    i__3 = jch - iskew * (jch + 1) + ioffg + (jch + 1)
 | |
| 				     * a_dim1;
 | |
| 			    ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
 | |
| 			    if (csym) {
 | |
| 				ct.r = c__.r, ct.i = c__.i;
 | |
| 				st.r = s.r, st.i = s.i;
 | |
| 			    } else {
 | |
| 				d_cnjg(&z__1, &ztemp);
 | |
| 				ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 				d_cnjg(&z__1, &c__);
 | |
| 				ct.r = z__1.r, ct.i = z__1.i;
 | |
| 				d_cnjg(&z__1, &s);
 | |
| 				st.r = z__1.r, st.i = z__1.i;
 | |
| 			    }
 | |
| 			    i__3 = k + 2;
 | |
| 			    zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
 | |
| 				    s, &a[(1 - iskew) * jch + ioffg + jch * 
 | |
| 				    a_dim1], &ilda, &ztemp, &extra);
 | |
| /* Computing MAX */
 | |
| 			    i__3 = 1, i__5 = jch - k;
 | |
| 			    irow = f2cmax(i__3,i__5);
 | |
| /* Computing MIN */
 | |
| 			    i__3 = jch + 1, i__5 = k + 2;
 | |
| 			    il = f2cmin(i__3,i__5);
 | |
| 			    extra.r = 0., extra.i = 0.;
 | |
| 			    L__1 = jch > k;
 | |
| 			    zlarot_(&c_false, &L__1, &c_true, &il, &ct, &st, &
 | |
| 				    a[irow - iskew * jch + ioffg + jch * 
 | |
| 				    a_dim1], &ilda, &extra, &ztemp);
 | |
| 			    icol = jch;
 | |
| /* L270: */
 | |
| 			}
 | |
| /* L280: */
 | |
| 		    }
 | |
| /* L290: */
 | |
| 		}
 | |
| 
 | |
| /*              If we need lower triangle, copy from upper. Note that */
 | |
| /*              the order of copying is chosen to work for 'q' -> 'b' */
 | |
| 
 | |
| 		if (ipack != ipackg && ipack != 3) {
 | |
| 		    i__1 = *n;
 | |
| 		    for (jc = 1; jc <= i__1; ++jc) {
 | |
| 			irow = ioffst - iskew * jc;
 | |
| 			if (csym) {
 | |
| /* Computing MIN */
 | |
| 			    i__2 = *n, i__3 = jc + uub;
 | |
| 			    i__4 = f2cmin(i__2,i__3);
 | |
| 			    for (jr = jc; jr <= i__4; ++jr) {
 | |
| 				i__2 = jr + irow + jc * a_dim1;
 | |
| 				i__3 = jc - iskew * jr + ioffg + jr * a_dim1;
 | |
| 				a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
 | |
| /* L300: */
 | |
| 			    }
 | |
| 			} else {
 | |
| /* Computing MIN */
 | |
| 			    i__2 = *n, i__3 = jc + uub;
 | |
| 			    i__4 = f2cmin(i__2,i__3);
 | |
| 			    for (jr = jc; jr <= i__4; ++jr) {
 | |
| 				i__2 = jr + irow + jc * a_dim1;
 | |
| 				d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr 
 | |
| 					* a_dim1]);
 | |
| 				a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| /* L310: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L320: */
 | |
| 		    }
 | |
| 		    if (ipack == 5) {
 | |
| 			i__1 = *n;
 | |
| 			for (jc = *n - uub + 1; jc <= i__1; ++jc) {
 | |
| 			    i__4 = uub + 1;
 | |
| 			    for (jr = *n + 2 - jc; jr <= i__4; ++jr) {
 | |
| 				i__2 = jr + jc * a_dim1;
 | |
| 				a[i__2].r = 0., a[i__2].i = 0.;
 | |
| /* L330: */
 | |
| 			    }
 | |
| /* L340: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    if (ipackg == 6) {
 | |
| 			ipackg = ipack;
 | |
| 		    } else {
 | |
| 			ipackg = 0;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Bottom-Up -- Generate Lower triangle only */
 | |
| 
 | |
| 		if (ipack >= 5) {
 | |
| 		    ipackg = 5;
 | |
| 		    if (ipack == 6) {
 | |
| 			ioffg = 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    ipackg = 2;
 | |
| 		}
 | |
| 
 | |
| 		i__1 = mnmin;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__4 = (1 - iskew) * j + ioffg + j * a_dim1;
 | |
| 		    i__2 = j;
 | |
| 		    z__1.r = d__[i__2], z__1.i = 0.;
 | |
| 		    a[i__4].r = z__1.r, a[i__4].i = z__1.i;
 | |
| /* L350: */
 | |
| 		}
 | |
| 
 | |
| 		i__1 = uub;
 | |
| 		for (k = 1; k <= i__1; ++k) {
 | |
| 		    for (jc = *n - 1; jc >= 1; --jc) {
 | |
| /* Computing MIN */
 | |
| 			i__4 = *n + 1 - jc, i__2 = k + 2;
 | |
| 			il = f2cmin(i__4,i__2);
 | |
| 			extra.r = 0., extra.i = 0.;
 | |
| 			i__4 = (1 - iskew) * jc + 1 + ioffg + jc * a_dim1;
 | |
| 			ztemp.r = a[i__4].r, ztemp.i = a[i__4].i;
 | |
| 			angle = dlarnd_(&c__1, &iseed[1]) * 
 | |
| 				6.2831853071795864769252867663;
 | |
| 			d__1 = cos(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			d__1 = sin(angle);
 | |
| 			//zlarnd_(&z__2, &c__5, &iseed[1]);
 | |
| 			z__2=zlarnd_(&c__5, &iseed[1]);
 | |
| 			z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
 | |
| 			s.r = z__1.r, s.i = z__1.i;
 | |
| 			if (csym) {
 | |
| 			    ct.r = c__.r, ct.i = c__.i;
 | |
| 			    st.r = s.r, st.i = s.i;
 | |
| 			} else {
 | |
| 			    d_cnjg(&z__1, &ztemp);
 | |
| 			    ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 			    d_cnjg(&z__1, &c__);
 | |
| 			    ct.r = z__1.r, ct.i = z__1.i;
 | |
| 			    d_cnjg(&z__1, &s);
 | |
| 			    st.r = z__1.r, st.i = z__1.i;
 | |
| 			}
 | |
| 			L__1 = *n - jc > k;
 | |
| 			zlarot_(&c_false, &c_true, &L__1, &il, &c__, &s, &a[(
 | |
| 				1 - iskew) * jc + ioffg + jc * a_dim1], &ilda,
 | |
| 				 &ztemp, &extra);
 | |
| /* Computing MAX */
 | |
| 			i__4 = 1, i__2 = jc - k + 1;
 | |
| 			icol = f2cmax(i__4,i__2);
 | |
| 			i__4 = jc + 2 - icol;
 | |
| 			zlarot_(&c_true, &c_false, &c_true, &i__4, &ct, &st, &
 | |
| 				a[jc - iskew * icol + ioffg + icol * a_dim1], 
 | |
| 				&ilda, &dummy, &ztemp);
 | |
| 
 | |
| /*                    Chase EXTRA back down the matrix */
 | |
| 
 | |
| 			icol = jc;
 | |
| 			i__4 = *n - 1;
 | |
| 			i__2 = k;
 | |
| 			for (jch = jc + k; i__2 < 0 ? jch >= i__4 : jch <= 
 | |
| 				i__4; jch += i__2) {
 | |
| 			    zlartg_(&a[jch - iskew * icol + ioffg + icol * 
 | |
| 				    a_dim1], &extra, &realc, &s, &dummy);
 | |
| 			    //zlarnd_(&z__1, &c__5, &iseed[1]);
 | |
| 			    z__1=zlarnd_(&c__5, &iseed[1]);
 | |
| 			    dummy.r = z__1.r, dummy.i = z__1.i;
 | |
| 			    z__1.r = realc * dummy.r, z__1.i = realc * 
 | |
| 				    dummy.i;
 | |
| 			    c__.r = z__1.r, c__.i = z__1.i;
 | |
| 			    z__1.r = s.r * dummy.r - s.i * dummy.i, z__1.i = 
 | |
| 				    s.r * dummy.i + s.i * dummy.r;
 | |
| 			    s.r = z__1.r, s.i = z__1.i;
 | |
| 			    i__3 = (1 - iskew) * jch + 1 + ioffg + jch * 
 | |
| 				    a_dim1;
 | |
| 			    ztemp.r = a[i__3].r, ztemp.i = a[i__3].i;
 | |
| 			    if (csym) {
 | |
| 				ct.r = c__.r, ct.i = c__.i;
 | |
| 				st.r = s.r, st.i = s.i;
 | |
| 			    } else {
 | |
| 				d_cnjg(&z__1, &ztemp);
 | |
| 				ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 				d_cnjg(&z__1, &c__);
 | |
| 				ct.r = z__1.r, ct.i = z__1.i;
 | |
| 				d_cnjg(&z__1, &s);
 | |
| 				st.r = z__1.r, st.i = z__1.i;
 | |
| 			    }
 | |
| 			    i__3 = k + 2;
 | |
| 			    zlarot_(&c_true, &c_true, &c_true, &i__3, &c__, &
 | |
| 				    s, &a[jch - iskew * icol + ioffg + icol * 
 | |
| 				    a_dim1], &ilda, &extra, &ztemp);
 | |
| /* Computing MIN */
 | |
| 			    i__3 = *n + 1 - jch, i__5 = k + 2;
 | |
| 			    il = f2cmin(i__3,i__5);
 | |
| 			    extra.r = 0., extra.i = 0.;
 | |
| 			    L__1 = *n - jch > k;
 | |
| 			    zlarot_(&c_false, &c_true, &L__1, &il, &ct, &st, &
 | |
| 				    a[(1 - iskew) * jch + ioffg + jch * 
 | |
| 				    a_dim1], &ilda, &ztemp, &extra);
 | |
| 			    icol = jch;
 | |
| /* L360: */
 | |
| 			}
 | |
| /* L370: */
 | |
| 		    }
 | |
| /* L380: */
 | |
| 		}
 | |
| 
 | |
| /*              If we need upper triangle, copy from lower. Note that */
 | |
| /*              the order of copying is chosen to work for 'b' -> 'q' */
 | |
| 
 | |
| 		if (ipack != ipackg && ipack != 4) {
 | |
| 		    for (jc = *n; jc >= 1; --jc) {
 | |
| 			irow = ioffst - iskew * jc;
 | |
| 			if (csym) {
 | |
| /* Computing MAX */
 | |
| 			    i__2 = 1, i__4 = jc - uub;
 | |
| 			    i__1 = f2cmax(i__2,i__4);
 | |
| 			    for (jr = jc; jr >= i__1; --jr) {
 | |
| 				i__2 = jr + irow + jc * a_dim1;
 | |
| 				i__4 = jc - iskew * jr + ioffg + jr * a_dim1;
 | |
| 				a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
 | |
| /* L390: */
 | |
| 			    }
 | |
| 			} else {
 | |
| /* Computing MAX */
 | |
| 			    i__2 = 1, i__4 = jc - uub;
 | |
| 			    i__1 = f2cmax(i__2,i__4);
 | |
| 			    for (jr = jc; jr >= i__1; --jr) {
 | |
| 				i__2 = jr + irow + jc * a_dim1;
 | |
| 				d_cnjg(&z__1, &a[jc - iskew * jr + ioffg + jr 
 | |
| 					* a_dim1]);
 | |
| 				a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| /* L400: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L410: */
 | |
| 		    }
 | |
| 		    if (ipack == 6) {
 | |
| 			i__1 = uub;
 | |
| 			for (jc = 1; jc <= i__1; ++jc) {
 | |
| 			    i__2 = uub + 1 - jc;
 | |
| 			    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 				i__4 = jr + jc * a_dim1;
 | |
| 				a[i__4].r = 0., a[i__4].i = 0.;
 | |
| /* L420: */
 | |
| 			    }
 | |
| /* L430: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    if (ipackg == 5) {
 | |
| 			ipackg = ipack;
 | |
| 		    } else {
 | |
| 			ipackg = 0;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Ensure that the diagonal is real if Hermitian */
 | |
| 
 | |
| 	    if (! csym) {
 | |
| 		i__1 = *n;
 | |
| 		for (jc = 1; jc <= i__1; ++jc) {
 | |
| 		    irow = ioffst + (1 - iskew) * jc;
 | |
| 		    i__2 = irow + jc * a_dim1;
 | |
| 		    i__4 = irow + jc * a_dim1;
 | |
| 		    d__1 = a[i__4].r;
 | |
| 		    z__1.r = d__1, z__1.i = 0.;
 | |
| 		    a[i__2].r = z__1.r, a[i__2].i = z__1.i;
 | |
| /* L440: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        4)      Generate Banded Matrix by first */
 | |
| /*                Rotating by random Unitary matrices, */
 | |
| /*                then reducing the bandwidth using Householder */
 | |
| /*                transformations. */
 | |
| 
 | |
| /*                Note: we should get here only if LDA .ge. N */
 | |
| 
 | |
| 	if (isym == 1) {
 | |
| 
 | |
| /*           Non-symmetric -- A = U D V */
 | |
| 
 | |
| 	    zlagge_(&mr, &nc, &llb, &uub, &d__[1], &a[a_offset], lda, &iseed[
 | |
| 		    1], &work[1], &iinfo);
 | |
| 	} else {
 | |
| 
 | |
| /*           Symmetric -- A = U D U' or */
 | |
| /*           Hermitian -- A = U D U* */
 | |
| 
 | |
| 	    if (csym) {
 | |
| 		zlagsy_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
 | |
| 			1], &iinfo);
 | |
| 	    } else {
 | |
| 		zlaghe_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[
 | |
| 			1], &iinfo);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = 3;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     5)      Pack the matrix */
 | |
| 
 | |
|     if (ipack != ipackg) {
 | |
| 	if (ipack == 1) {
 | |
| 
 | |
| /*           'U' -- Upper triangular, not packed */
 | |
| 
 | |
| 	    i__1 = *m;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = *m;
 | |
| 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 		    i__4 = i__ + j * a_dim1;
 | |
| 		    a[i__4].r = 0., a[i__4].i = 0.;
 | |
| /* L450: */
 | |
| 		}
 | |
| /* L460: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 2) {
 | |
| 
 | |
| /*           'L' -- Lower triangular, not packed */
 | |
| 
 | |
| 	    i__1 = *m;
 | |
| 	    for (j = 2; j <= i__1; ++j) {
 | |
| 		i__2 = j - 1;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    i__4 = i__ + j * a_dim1;
 | |
| 		    a[i__4].r = 0., a[i__4].i = 0.;
 | |
| /* L470: */
 | |
| 		}
 | |
| /* L480: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 3) {
 | |
| 
 | |
| /*           'C' -- Upper triangle packed Columnwise. */
 | |
| 
 | |
| 	    icol = 1;
 | |
| 	    irow = 0;
 | |
| 	    i__1 = *m;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    ++irow;
 | |
| 		    if (irow > *lda) {
 | |
| 			irow = 1;
 | |
| 			++icol;
 | |
| 		    }
 | |
| 		    i__4 = irow + icol * a_dim1;
 | |
| 		    i__3 = i__ + j * a_dim1;
 | |
| 		    a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
 | |
| /* L490: */
 | |
| 		}
 | |
| /* L500: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 4) {
 | |
| 
 | |
| /*           'R' -- Lower triangle packed Columnwise. */
 | |
| 
 | |
| 	    icol = 1;
 | |
| 	    irow = 0;
 | |
| 	    i__1 = *m;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = *m;
 | |
| 		for (i__ = j; i__ <= i__2; ++i__) {
 | |
| 		    ++irow;
 | |
| 		    if (irow > *lda) {
 | |
| 			irow = 1;
 | |
| 			++icol;
 | |
| 		    }
 | |
| 		    i__4 = irow + icol * a_dim1;
 | |
| 		    i__3 = i__ + j * a_dim1;
 | |
| 		    a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
 | |
| /* L510: */
 | |
| 		}
 | |
| /* L520: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack >= 5) {
 | |
| 
 | |
| /*           'B' -- The lower triangle is packed as a band matrix. */
 | |
| /*           'Q' -- The upper triangle is packed as a band matrix. */
 | |
| /*           'Z' -- The whole matrix is packed as a band matrix. */
 | |
| 
 | |
| 	    if (ipack == 5) {
 | |
| 		uub = 0;
 | |
| 	    }
 | |
| 	    if (ipack == 6) {
 | |
| 		llb = 0;
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = uub;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__2 = j + llb;
 | |
| 		for (i__ = f2cmin(i__2,*m); i__ >= 1; --i__) {
 | |
| 		    i__2 = i__ - j + uub + 1 + j * a_dim1;
 | |
| 		    i__4 = i__ + j * a_dim1;
 | |
| 		    a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i;
 | |
| /* L530: */
 | |
| 		}
 | |
| /* L540: */
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = uub + 2; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__4 = j + llb;
 | |
| 		i__2 = f2cmin(i__4,*m);
 | |
| 		for (i__ = j - uub; i__ <= i__2; ++i__) {
 | |
| 		    i__4 = i__ - j + uub + 1 + j * a_dim1;
 | |
| 		    i__3 = i__ + j * a_dim1;
 | |
| 		    a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i;
 | |
| /* L550: */
 | |
| 		}
 | |
| /* L560: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        If packed, zero out extraneous elements. */
 | |
| 
 | |
| /*        Symmetric/Triangular Packed -- */
 | |
| /*        zero out everything after A(IROW,ICOL) */
 | |
| 
 | |
| 	if (ipack == 3 || ipack == 4) {
 | |
| 	    i__1 = *m;
 | |
| 	    for (jc = icol; jc <= i__1; ++jc) {
 | |
| 		i__2 = *lda;
 | |
| 		for (jr = irow + 1; jr <= i__2; ++jr) {
 | |
| 		    i__4 = jr + jc * a_dim1;
 | |
| 		    a[i__4].r = 0., a[i__4].i = 0.;
 | |
| /* L570: */
 | |
| 		}
 | |
| 		irow = 0;
 | |
| /* L580: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack >= 5) {
 | |
| 
 | |
| /*           Packed Band -- */
 | |
| /*              1st row is now in A( UUB+2-j, j), zero above it */
 | |
| /*              m-th row is now in A( M+UUB-j,j), zero below it */
 | |
| /*              last non-zero diagonal is now in A( UUB+LLB+1,j ), */
 | |
| /*                 zero below it, too. */
 | |
| 
 | |
| 	    ir1 = uub + llb + 2;
 | |
| 	    ir2 = uub + *m + 2;
 | |
| 	    i__1 = *n;
 | |
| 	    for (jc = 1; jc <= i__1; ++jc) {
 | |
| 		i__2 = uub + 1 - jc;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    i__4 = jr + jc * a_dim1;
 | |
| 		    a[i__4].r = 0., a[i__4].i = 0.;
 | |
| /* L590: */
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| /* Computing MIN */
 | |
| 		i__3 = ir1, i__5 = ir2 - jc;
 | |
| 		i__2 = 1, i__4 = f2cmin(i__3,i__5);
 | |
| 		i__6 = *lda;
 | |
| 		for (jr = f2cmax(i__2,i__4); jr <= i__6; ++jr) {
 | |
| 		    i__2 = jr + jc * a_dim1;
 | |
| 		    a[i__2].r = 0., a[i__2].i = 0.;
 | |
| /* L600: */
 | |
| 		}
 | |
| /* L610: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLATMT */
 | |
| 
 | |
| } /* zlatmt_ */
 | |
| 
 |