4728 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4728 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {0.f,0.f};
 | |
| static complex c_b2 = {1.f,0.f};
 | |
| static integer c__6 = 6;
 | |
| static integer c__0 = 0;
 | |
| static integer c__2 = 2;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief <b> CGESVD computes the singular value decomposition (SVD) for GE matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download CGESVD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */
 | |
| /*                          WORK, LWORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBU, JOBVT */
 | |
| /*       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N */
 | |
| /*       REAL               RWORK( * ), S( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
 | |
| /*      $                   WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CGESVD computes the singular value decomposition (SVD) of a complex */
 | |
| /* > M-by-N matrix A, optionally computing the left and/or right singular */
 | |
| /* > vectors. The SVD is written */
 | |
| /* > */
 | |
| /* >      A = U * SIGMA * conjugate-transpose(V) */
 | |
| /* > */
 | |
| /* > where SIGMA is an M-by-N matrix which is zero except for its */
 | |
| /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
 | |
| /* > V is an N-by-N unitary matrix.  The diagonal elements of SIGMA */
 | |
| /* > are the singular values of A; they are real and non-negative, and */
 | |
| /* > are returned in descending order.  The first f2cmin(m,n) columns of */
 | |
| /* > U and V are the left and right singular vectors of A. */
 | |
| /* > */
 | |
| /* > Note that the routine returns V**H, not V. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBU */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU is CHARACTER*1 */
 | |
| /* >          Specifies options for computing all or part of the matrix U: */
 | |
| /* >          = 'A':  all M columns of U are returned in array U: */
 | |
| /* >          = 'S':  the first f2cmin(m,n) columns of U (the left singular */
 | |
| /* >                  vectors) are returned in the array U; */
 | |
| /* >          = 'O':  the first f2cmin(m,n) columns of U (the left singular */
 | |
| /* >                  vectors) are overwritten on the array A; */
 | |
| /* >          = 'N':  no columns of U (no left singular vectors) are */
 | |
| /* >                  computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVT */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVT is CHARACTER*1 */
 | |
| /* >          Specifies options for computing all or part of the matrix */
 | |
| /* >          V**H: */
 | |
| /* >          = 'A':  all N rows of V**H are returned in the array VT; */
 | |
| /* >          = 'S':  the first f2cmin(m,n) rows of V**H (the right singular */
 | |
| /* >                  vectors) are returned in the array VT; */
 | |
| /* >          = 'O':  the first f2cmin(m,n) rows of V**H (the right singular */
 | |
| /* >                  vectors) are overwritten on the array A; */
 | |
| /* >          = 'N':  no rows of V**H (no right singular vectors) are */
 | |
| /* >                  computed. */
 | |
| /* > */
 | |
| /* >          JOBVT and JOBU cannot both be 'O'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the input matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the input matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, */
 | |
| /* >          if JOBU = 'O',  A is overwritten with the first f2cmin(m,n) */
 | |
| /* >                          columns of U (the left singular vectors, */
 | |
| /* >                          stored columnwise); */
 | |
| /* >          if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */
 | |
| /* >                          rows of V**H (the right singular vectors, */
 | |
| /* >                          stored rowwise); */
 | |
| /* >          if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */
 | |
| /* >                          are destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension (f2cmin(M,N)) */
 | |
| /* >          The singular values of A, sorted so that S(i) >= S(i+1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is COMPLEX array, dimension (LDU,UCOL) */
 | |
| /* >          (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */
 | |
| /* >          If JOBU = 'A', U contains the M-by-M unitary matrix U; */
 | |
| /* >          if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */
 | |
| /* >          (the left singular vectors, stored columnwise); */
 | |
| /* >          if JOBU = 'N' or 'O', U is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U.  LDU >= 1; if */
 | |
| /* >          JOBU = 'S' or 'A', LDU >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is COMPLEX array, dimension (LDVT,N) */
 | |
| /* >          If JOBVT = 'A', VT contains the N-by-N unitary matrix */
 | |
| /* >          V**H; */
 | |
| /* >          if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */
 | |
| /* >          V**H (the right singular vectors, stored rowwise); */
 | |
| /* >          if JOBVT = 'N' or 'O', VT is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >          The leading dimension of the array VT.  LDVT >= 1; if */
 | |
| /* >          JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* >          LWORK >=  MAX(1,2*MIN(M,N)+MAX(M,N)). */
 | |
| /* >          For good performance, LWORK should generally be larger. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is REAL array, dimension (5*f2cmin(M,N)) */
 | |
| /* >          On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the */
 | |
| /* >          unconverged superdiagonal elements of an upper bidiagonal */
 | |
| /* >          matrix B whose diagonal is in S (not necessarily sorted). */
 | |
| /* >          B satisfies A = U * B * VT, so it has the same singular */
 | |
| /* >          values as A, and singular vectors related by U and VT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  if CBDSQR did not converge, INFO specifies how many */
 | |
| /* >                superdiagonals of an intermediate bidiagonal form B */
 | |
| /* >                did not converge to zero. See the description of RWORK */
 | |
| /* >                above for details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup complexGEsing */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void cgesvd_(char *jobu, char *jobvt, integer *m, integer *n, 
 | |
| 	complex *a, integer *lda, real *s, complex *u, integer *ldu, complex *
 | |
| 	vt, integer *ldvt, complex *work, integer *lwork, real *rwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     address a__1[2];
 | |
|     integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2], 
 | |
| 	    i__2, i__3, i__4;
 | |
|     char ch__1[2];
 | |
| 
 | |
|     /* Local variables */
 | |
|     complex cdum[1];
 | |
|     integer iscl;
 | |
|     real anrm;
 | |
|     integer ierr, itau, ncvt, nrvt, lwork_cgebrd__, lwork_cgelqf__, 
 | |
| 	    lwork_cgeqrf__, i__;
 | |
|     extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, complex *, complex *, integer *, complex *, integer *, 
 | |
| 	    complex *, complex *, integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer chunk, minmn, wrkbl, itaup, itauq, mnthr, iwork;
 | |
|     logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs;
 | |
|     integer ie;
 | |
|     extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *, 
 | |
| 	    integer *, real *, real *, complex *, complex *, complex *, 
 | |
| 	    integer *, integer *);
 | |
|     extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | |
| 	    real *);
 | |
|     integer ir, iu;
 | |
|     extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *, 
 | |
| 	    integer *, complex *, complex *, integer *, integer *), clascl_(
 | |
| 	    char *, integer *, integer *, real *, real *, integer *, integer *
 | |
| 	    , complex *, integer *, integer *), cgeqrf_(integer *, 
 | |
| 	    integer *, complex *, integer *, complex *, complex *, integer *, 
 | |
| 	    integer *);
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, complex *, integer *), claset_(char *, 
 | |
| 	    integer *, integer *, complex *, complex *, complex *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer 
 | |
| 	    *, real *, real *, complex *, integer *, complex *, integer *, 
 | |
| 	    complex *, integer *, real *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void cungbr_(char *, integer *, integer *, integer 
 | |
| 	    *, complex *, integer *, complex *, complex *, integer *, integer 
 | |
| 	    *);
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ void cunmbr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, complex *, integer *, complex *, complex *, 
 | |
| 	    integer *, complex *, integer *, integer *), cunglq_(integer *, integer *, integer *, complex *, 
 | |
| 	    integer *, complex *, complex *, integer *, integer *), cungqr_(
 | |
| 	    integer *, integer *, integer *, complex *, integer *, complex *, 
 | |
| 	    complex *, integer *, integer *);
 | |
|     integer ldwrkr, minwrk, ldwrku, maxwrk;
 | |
|     real smlnum;
 | |
|     integer irwork;
 | |
|     logical lquery, wntuas, wntvas;
 | |
|     integer lwork_cungbr_p__, lwork_cungbr_q__, lwork_cunglq_n__, 
 | |
| 	    lwork_cunglq_m__, lwork_cungqr_m__, lwork_cungqr_n__, blk, ncu;
 | |
|     real dum[1], eps;
 | |
|     integer nru;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --s;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     wntua = lsame_(jobu, "A");
 | |
|     wntus = lsame_(jobu, "S");
 | |
|     wntuas = wntua || wntus;
 | |
|     wntuo = lsame_(jobu, "O");
 | |
|     wntun = lsame_(jobu, "N");
 | |
|     wntva = lsame_(jobvt, "A");
 | |
|     wntvs = lsame_(jobvt, "S");
 | |
|     wntvas = wntva || wntvs;
 | |
|     wntvo = lsame_(jobvt, "O");
 | |
|     wntvn = lsame_(jobvt, "N");
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
|     if (! (wntua || wntus || wntuo || wntun)) {
 | |
| 	*info = -1;
 | |
|     } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) {
 | |
| 	*info = -2;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldu < 1 || wntuas && *ldu < *m) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) {
 | |
| 	*info = -11;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*      (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*       minimal amount of workspace needed at that point in the code, */
 | |
| /*       as well as the preferred amount for good performance. */
 | |
| /*       CWorkspace refers to complex workspace, and RWorkspace to */
 | |
| /*       real workspace. NB refers to the optimal block size for the */
 | |
| /*       immediately following subroutine, as returned by ILAENV.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	minwrk = 1;
 | |
| 	maxwrk = 1;
 | |
| 	if (*m >= *n && minmn > 0) {
 | |
| 
 | |
| /*           Space needed for ZBDSQR is BDSPAC = 5*N */
 | |
| 
 | |
| /* Writing concatenation */
 | |
| 	    i__1[0] = 1, a__1[0] = jobu;
 | |
| 	    i__1[1] = 1, a__1[1] = jobvt;
 | |
| 	    s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
| 	    mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
 | |
| 		    ftnlen)6, (ftnlen)2);
 | |
| /*           Compute space needed for CGEQRF */
 | |
| 	    cgeqrf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cgeqrf__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CUNGQR */
 | |
| 	    cungqr_(m, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungqr_n__ = (integer) cdum[0].r;
 | |
| 	    cungqr_(m, m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungqr_m__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CGEBRD */
 | |
| 	    cgebrd_(n, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &
 | |
| 		    c_n1, &ierr);
 | |
| 	    lwork_cgebrd__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CUNGBR */
 | |
| 	    cungbr_("P", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungbr_p__ = (integer) cdum[0].r;
 | |
| 	    cungbr_("Q", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungbr_q__ = (integer) cdum[0].r;
 | |
| 
 | |
| /* Writing concatenation */
 | |
| 	    i__1[0] = 1, a__1[0] = jobu;
 | |
| 	    i__1[1] = 1, a__1[1] = jobvt;
 | |
| 	    s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
| 	    mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
 | |
| 		    ftnlen)6, (ftnlen)2);
 | |
| 	    if (*m >= mnthr) {
 | |
| 		if (wntun) {
 | |
| 
 | |
| /*                 Path 1 (M much larger than N, JOBU='N') */
 | |
| 
 | |
| 		    maxwrk = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    if (wntvo || wntvas) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    minwrk = *n * 3;
 | |
| 		} else if (wntuo && wntvn) {
 | |
| 
 | |
| /*                 Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntuo && wntvas) {
 | |
| 
 | |
| /*                 Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */
 | |
| /*                 'A') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntus && wntvn) {
 | |
| 
 | |
| /*                 Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *n * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntus && wntvo) {
 | |
| 
 | |
| /*                 Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = (*n << 1) * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntus && wntvas) {
 | |
| 
 | |
| /*                 Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */
 | |
| /*                 'A') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *n * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntua && wntvn) {
 | |
| 
 | |
| /*                 Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *n * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntua && wntvo) {
 | |
| 
 | |
| /*                 Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = (*n << 1) * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		} else if (wntua && wntvas) {
 | |
| 
 | |
| /*                 Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */
 | |
| /*                 'A') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_cgeqrf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *n * *n + wrkbl;
 | |
| 		    minwrk = (*n << 1) + *m;
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Path 10 (M at least N, but not much larger) */
 | |
| 
 | |
| 		cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum,
 | |
| 			 &c_n1, &ierr);
 | |
| 		lwork_cgebrd__ = (integer) cdum[0].r;
 | |
| 		maxwrk = (*n << 1) + lwork_cgebrd__;
 | |
| 		if (wntus || wntuo) {
 | |
| 		    cungbr_("Q", m, n, n, &a[a_offset], lda, cdum, cdum, &
 | |
| 			    c_n1, &ierr);
 | |
| 		    lwork_cungbr_q__ = (integer) cdum[0].r;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		if (wntua) {
 | |
| 		    cungbr_("Q", m, m, n, &a[a_offset], lda, cdum, cdum, &
 | |
| 			    c_n1, &ierr);
 | |
| 		    lwork_cungbr_q__ = (integer) cdum[0].r;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		if (! wntvn) {
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		minwrk = (*n << 1) + *m;
 | |
| 	    }
 | |
| 	} else if (minmn > 0) {
 | |
| 
 | |
| /*           Space needed for CBDSQR is BDSPAC = 5*M */
 | |
| 
 | |
| /* Writing concatenation */
 | |
| 	    i__1[0] = 1, a__1[0] = jobu;
 | |
| 	    i__1[1] = 1, a__1[1] = jobvt;
 | |
| 	    s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
| 	    mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
 | |
| 		    ftnlen)6, (ftnlen)2);
 | |
| /*           Compute space needed for CGELQF */
 | |
| 	    cgelqf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cgelqf__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CUNGLQ */
 | |
| 	    cunglq_(n, n, m, cdum, n, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cunglq_n__ = (integer) cdum[0].r;
 | |
| 	    cunglq_(m, n, m, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cunglq_m__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CGEBRD */
 | |
| 	    cgebrd_(m, m, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &
 | |
| 		    c_n1, &ierr);
 | |
| 	    lwork_cgebrd__ = (integer) cdum[0].r;
 | |
| /*            Compute space needed for CUNGBR P */
 | |
| 	    cungbr_("P", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungbr_p__ = (integer) cdum[0].r;
 | |
| /*           Compute space needed for CUNGBR Q */
 | |
| 	    cungbr_("Q", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr);
 | |
| 	    lwork_cungbr_q__ = (integer) cdum[0].r;
 | |
| 	    if (*n >= mnthr) {
 | |
| 		if (wntvn) {
 | |
| 
 | |
| /*                 Path 1t(N much larger than M, JOBVT='N') */
 | |
| 
 | |
| 		    maxwrk = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    if (wntuo || wntuas) {
 | |
| /* Computing MAX */
 | |
| 			i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 			maxwrk = f2cmax(i__2,i__3);
 | |
| 		    }
 | |
| 		    minwrk = *m * 3;
 | |
| 		} else if (wntvo && wntun) {
 | |
| 
 | |
| /*                 Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntvo && wntuas) {
 | |
| 
 | |
| /*                 Path 3t(N much larger than M, JOBU='S' or 'A', */
 | |
| /*                 JOBVT='O') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntvs && wntun) {
 | |
| 
 | |
| /*                 Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *m * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntvs && wntuo) {
 | |
| 
 | |
| /*                 Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = (*m << 1) * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntvs && wntuas) {
 | |
| 
 | |
| /*                 Path 6t(N much larger than M, JOBU='S' or 'A', */
 | |
| /*                 JOBVT='S') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *m * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntva && wntun) {
 | |
| 
 | |
| /*                 Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *m * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntva && wntuo) {
 | |
| 
 | |
| /*                 Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = (*m << 1) * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		} else if (wntva && wntuas) {
 | |
| 
 | |
| /*                 Path 9t(N much larger than M, JOBU='S' or 'A', */
 | |
| /*                 JOBVT='A') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_cgelqf__;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    wrkbl = f2cmax(i__2,i__3);
 | |
| 		    maxwrk = *m * *m + wrkbl;
 | |
| 		    minwrk = (*m << 1) + *n;
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Path 10t(N greater than M, but not much larger) */
 | |
| 
 | |
| 		cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum,
 | |
| 			 &c_n1, &ierr);
 | |
| 		lwork_cgebrd__ = (integer) cdum[0].r;
 | |
| 		maxwrk = (*m << 1) + lwork_cgebrd__;
 | |
| 		if (wntvs || wntvo) {
 | |
| /*                Compute space needed for CUNGBR P */
 | |
| 		    cungbr_("P", m, n, m, &a[a_offset], n, cdum, cdum, &c_n1, 
 | |
| 			    &ierr);
 | |
| 		    lwork_cungbr_p__ = (integer) cdum[0].r;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		if (wntva) {
 | |
| 		    cungbr_("P", n, n, m, &a[a_offset], n, cdum, cdum, &c_n1, 
 | |
| 			    &ierr);
 | |
| 		    lwork_cungbr_p__ = (integer) cdum[0].r;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		if (! wntun) {
 | |
| /* Computing MAX */
 | |
| 		    i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__;
 | |
| 		    maxwrk = f2cmax(i__2,i__3);
 | |
| 		}
 | |
| 		minwrk = (*m << 1) + *n;
 | |
| 	    }
 | |
| 	}
 | |
| 	maxwrk = f2cmax(minwrk,maxwrk);
 | |
| 	work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -13;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__2 = -(*info);
 | |
| 	xerbla_("CGESVD", &i__2, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = sqrt(slamch_("S")) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = clange_("M", m, n, &a[a_offset], lda, dum);
 | |
|     iscl = 0;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	iscl = 1;
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     } else if (anrm > bignum) {
 | |
| 	iscl = 1;
 | |
| 	clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     if (*m >= *n) {
 | |
| 
 | |
| /*        A has at least as many rows as columns. If A has sufficiently */
 | |
| /*        more rows than columns, first reduce using the QR */
 | |
| /*        decomposition (if sufficient workspace available) */
 | |
| 
 | |
| 	if (*m >= mnthr) {
 | |
| 
 | |
| 	    if (wntun) {
 | |
| 
 | |
| /*              Path 1 (M much larger than N, JOBU='N') */
 | |
| /*              No left singular vectors to be computed */
 | |
| 
 | |
| 		itau = 1;
 | |
| 		iwork = itau + *n;
 | |
| 
 | |
| /*              Compute A=Q*R */
 | |
| /*              (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*              (RWorkspace: need 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
 | |
| 			i__2, &ierr);
 | |
| 
 | |
| /*              Zero out below R */
 | |
| 
 | |
| 		if (*n > 1) {
 | |
| 		    i__2 = *n - 1;
 | |
| 		    i__3 = *n - 1;
 | |
| 		    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[a_dim1 + 2], 
 | |
| 			    lda);
 | |
| 		}
 | |
| 		ie = 1;
 | |
| 		itauq = 1;
 | |
| 		itaup = itauq + *n;
 | |
| 		iwork = itaup + *n;
 | |
| 
 | |
| /*              Bidiagonalize R in A */
 | |
| /*              (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*              (RWorkspace: need N) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
 | |
| 			itauq], &work[itaup], &work[iwork], &i__2, &ierr);
 | |
| 		ncvt = 0;
 | |
| 		if (wntvo || wntvas) {
 | |
| 
 | |
| /*                 If right singular vectors desired, generate P'. */
 | |
| /*                 (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &
 | |
| 			    work[iwork], &i__2, &ierr);
 | |
| 		    ncvt = *n;
 | |
| 		}
 | |
| 		irwork = ie + *n;
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, computing right */
 | |
| /*              singular vectors of A in A if desired */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &rwork[ie], &a[
 | |
| 			a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[
 | |
| 			irwork], info);
 | |
| 
 | |
| /*              If right singular vectors desired in VT, copy them there */
 | |
| 
 | |
| 		if (wntvas) {
 | |
| 		    clacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 			    ldvt);
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntuo && wntvn) {
 | |
| 
 | |
| /*              Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
 | |
| /*              N left singular vectors to be overwritten on A and */
 | |
| /*              no right singular vectors to be computed */
 | |
| 
 | |
| 		if (*lwork >= *n * *n + *n * 3) {
 | |
| 
 | |
| /*                 Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ir = 1;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *lda * *n;
 | |
| 		    if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N, WORK(IR) is LDA by N */
 | |
| 
 | |
| 			ldwrku = *lda;
 | |
| 			ldwrkr = *lda;
 | |
| 		    } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 			i__2 = wrkbl, i__3 = *lda * *n;
 | |
| 			if (*lwork >= f2cmax(i__2,i__3) + *n * *n) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N, WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ldwrkr = *n;
 | |
| 			} else {
 | |
| 
 | |
| /*                    WORK(IU) is LDWRKU by N, WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = (*lwork - *n * *n) / *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 		    }
 | |
| 		    itau = ir + ldwrkr * *n;
 | |
| 		    iwork = itau + *n;
 | |
| 
 | |
| /*                 Compute A=Q*R */
 | |
| /*                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__2, &ierr);
 | |
| 
 | |
| /*                 Copy R to WORK(IR) and zero out below it */
 | |
| 
 | |
| 		    clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
 | |
| 		    i__2 = *n - 1;
 | |
| 		    i__3 = *n - 1;
 | |
| 		    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1], &
 | |
| 			    ldwrkr);
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__2, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *n;
 | |
| 		    iwork = itaup + *n;
 | |
| 
 | |
| /*                 Bidiagonalize R in WORK(IR) */
 | |
| /*                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                 (RWorkspace: need N) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 			    work[itauq], &work[itaup], &work[iwork], &i__2, &
 | |
| 			    ierr);
 | |
| 
 | |
| /*                 Generate left vectors bidiagonalizing R */
 | |
| /*                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                 (RWorkspace: need 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
 | |
| 			    work[iwork], &i__2, &ierr);
 | |
| 		    irwork = ie + *n;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of R in WORK(IR) */
 | |
| /*                 (CWorkspace: need N*N) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], cdum, 
 | |
| 			    &c__1, &work[ir], &ldwrkr, cdum, &c__1, &rwork[
 | |
| 			    irwork], info);
 | |
| 		    iu = itauq;
 | |
| 
 | |
| /*                 Multiply Q in A by left singular vectors of R in */
 | |
| /*                 WORK(IR), storing result in WORK(IU) and copying to A */
 | |
| /*                 (CWorkspace: need N*N+N, prefer N*N+M*N) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *m;
 | |
| 		    i__3 = ldwrku;
 | |
| 		    for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
 | |
| 			     i__3) {
 | |
| /* Computing MIN */
 | |
| 			i__4 = *m - i__ + 1;
 | |
| 			chunk = f2cmin(i__4,ldwrku);
 | |
| 			cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1]
 | |
| 				, lda, &work[ir], &ldwrkr, &c_b1, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + 
 | |
| 				a_dim1], lda);
 | |
| /* L10: */
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ie = 1;
 | |
| 		    itauq = 1;
 | |
| 		    itaup = itauq + *n;
 | |
| 		    iwork = itaup + *n;
 | |
| 
 | |
| /*                 Bidiagonalize A */
 | |
| /*                 (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
 | |
| /*                 (RWorkspace: N) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
 | |
| 			    itauq], &work[itaup], &work[iwork], &i__3, &ierr);
 | |
| 
 | |
| /*                 Generate left vectors bidiagonalizing A */
 | |
| /*                 (CWorkspace: need 3*N, prefer 2*N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
 | |
| 			    work[iwork], &i__3, &ierr);
 | |
| 		    irwork = ie + *n;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of A in A */
 | |
| /*                 (CWorkspace: need 0) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], cdum, 
 | |
| 			    &c__1, &a[a_offset], lda, cdum, &c__1, &rwork[
 | |
| 			    irwork], info);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntuo && wntvas) {
 | |
| 
 | |
| /*              Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */
 | |
| /*              N left singular vectors to be overwritten on A and */
 | |
| /*              N right singular vectors to be computed in VT */
 | |
| 
 | |
| 		if (*lwork >= *n * *n + *n * 3) {
 | |
| 
 | |
| /*                 Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ir = 1;
 | |
| /* Computing MAX */
 | |
| 		    i__3 = wrkbl, i__2 = *lda * *n;
 | |
| 		    if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is LDA by N */
 | |
| 
 | |
| 			ldwrku = *lda;
 | |
| 			ldwrkr = *lda;
 | |
| 		    } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 			i__3 = wrkbl, i__2 = *lda * *n;
 | |
| 			if (*lwork >= f2cmax(i__3,i__2) + *n * *n) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ldwrkr = *n;
 | |
| 			} else {
 | |
| 
 | |
| /*                    WORK(IU) is LDWRKU by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = (*lwork - *n * *n) / *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 		    }
 | |
| 		    itau = ir + ldwrkr * *n;
 | |
| 		    iwork = itau + *n;
 | |
| 
 | |
| /*                 Compute A=Q*R */
 | |
| /*                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__3, &ierr);
 | |
| 
 | |
| /*                 Copy R to VT, zeroing out below it */
 | |
| 
 | |
| 		    clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 			    ldvt);
 | |
| 		    if (*n > 1) {
 | |
| 			i__3 = *n - 1;
 | |
| 			i__2 = *n - 1;
 | |
| 			claset_("L", &i__3, &i__2, &c_b1, &c_b1, &vt[vt_dim1 
 | |
| 				+ 2], ldvt);
 | |
| 		    }
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__3, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *n;
 | |
| 		    iwork = itaup + *n;
 | |
| 
 | |
| /*                 Bidiagonalize R in VT, copying result to WORK(IR) */
 | |
| /*                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                 (RWorkspace: need N) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &
 | |
| 			    work[itauq], &work[itaup], &work[iwork], &i__3, &
 | |
| 			    ierr);
 | |
| 		    clacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], &
 | |
| 			    ldwrkr);
 | |
| 
 | |
| /*                 Generate left vectors bidiagonalizing R in WORK(IR) */
 | |
| /*                 (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
 | |
| 			    work[iwork], &i__3, &ierr);
 | |
| 
 | |
| /*                 Generate right vectors bidiagonalizing R in VT */
 | |
| /*                 (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], 
 | |
| 			    &work[iwork], &i__3, &ierr);
 | |
| 		    irwork = ie + *n;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of R in WORK(IR) and computing right */
 | |
| /*                 singular vectors of R in VT */
 | |
| /*                 (CWorkspace: need N*N) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			    vt_offset], ldvt, &work[ir], &ldwrkr, cdum, &c__1,
 | |
| 			     &rwork[irwork], info);
 | |
| 		    iu = itauq;
 | |
| 
 | |
| /*                 Multiply Q in A by left singular vectors of R in */
 | |
| /*                 WORK(IR), storing result in WORK(IU) and copying to A */
 | |
| /*                 (CWorkspace: need N*N+N, prefer N*N+M*N) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *m;
 | |
| 		    i__2 = ldwrku;
 | |
| 		    for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
 | |
| 			     i__2) {
 | |
| /* Computing MIN */
 | |
| 			i__4 = *m - i__ + 1;
 | |
| 			chunk = f2cmin(i__4,ldwrku);
 | |
| 			cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1]
 | |
| 				, lda, &work[ir], &ldwrkr, &c_b1, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + 
 | |
| 				a_dim1], lda);
 | |
| /* L20: */
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    itau = 1;
 | |
| 		    iwork = itau + *n;
 | |
| 
 | |
| /*                 Compute A=Q*R */
 | |
| /*                 (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__2, &ierr);
 | |
| 
 | |
| /*                 Copy R to VT, zeroing out below it */
 | |
| 
 | |
| 		    clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 			    ldvt);
 | |
| 		    if (*n > 1) {
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[vt_dim1 
 | |
| 				+ 2], ldvt);
 | |
| 		    }
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__2, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *n;
 | |
| 		    iwork = itaup + *n;
 | |
| 
 | |
| /*                 Bidiagonalize R in VT */
 | |
| /*                 (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                 (RWorkspace: N) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &
 | |
| 			    work[itauq], &work[itaup], &work[iwork], &i__2, &
 | |
| 			    ierr);
 | |
| 
 | |
| /*                 Multiply Q in A by left vectors bidiagonalizing R */
 | |
| /*                 (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, &
 | |
| 			    work[itauq], &a[a_offset], lda, &work[iwork], &
 | |
| 			    i__2, &ierr);
 | |
| 
 | |
| /*                 Generate right vectors bidiagonalizing R in VT */
 | |
| /*                 (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], 
 | |
| 			    &work[iwork], &i__2, &ierr);
 | |
| 		    irwork = ie + *n;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of A in A and computing right */
 | |
| /*                 singular vectors of A in VT */
 | |
| /*                 (CWorkspace: 0) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			    vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, 
 | |
| 			    &rwork[irwork], info);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntus) {
 | |
| 
 | |
| 		if (wntvn) {
 | |
| 
 | |
| /*                 Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
 | |
| /*                 N left singular vectors to be computed in U and */
 | |
| /*                 no right singular vectors to be computed */
 | |
| 
 | |
| 		    if (*lwork >= *n * *n + *n * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			ir = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *n) {
 | |
| 
 | |
| /*                       WORK(IR) is LDA by N */
 | |
| 
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to WORK(IR), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1]
 | |
| 				, &ldwrkr);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left vectors bidiagonalizing R in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], 
 | |
| 				cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1, 
 | |
| 				&rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in A by left singular vectors of R in */
 | |
| /*                    WORK(IR), storing result in U */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
 | |
| 				work[ir], &ldwrkr, &c_b1, &u[u_offset], ldu);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Zero out below R in A */
 | |
| 
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
 | |
| 				    a_dim1 + 2], lda);
 | |
| 			}
 | |
| 
 | |
| /*                    Bidiagonalize R in A */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left vectors bidiagonalizing R */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
 | |
| 				work[itauq], &u[u_offset], ldu, &work[iwork], 
 | |
| 				&i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], 
 | |
| 				cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 				rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntvo) {
 | |
| 
 | |
| /*                 Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
 | |
| /*                 N left singular vectors to be computed in U and */
 | |
| /*                 N right singular vectors to be overwritten on A */
 | |
| 
 | |
| 		    if (*lwork >= (*n << 1) * *n + *n * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + (*lda << 1) * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N and WORK(IR) is LDA by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else if (*lwork >= wrkbl + (*lda + *n) * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is N by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *n;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R */
 | |
| /*                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to WORK(IU), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
 | |
| 				, &ldwrku);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IU), copying result to */
 | |
| /*                    WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*N*N+3*N, */
 | |
| /*                                 prefer 2*N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need   N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*N*N+3*N-1, */
 | |
| /*                                 prefer 2*N*N+2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IU) and computing */
 | |
| /*                    right singular vectors of R in WORK(IR) */
 | |
| /*                    (CWorkspace: need 2*N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in A by left singular vectors of R in */
 | |
| /*                    WORK(IU), storing result in U */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
 | |
| 				work[iu], &ldwrku, &c_b1, &u[u_offset], ldu);
 | |
| 
 | |
| /*                    Copy right singular vectors of R to A */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], 
 | |
| 				lda);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Zero out below R in A */
 | |
| 
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
 | |
| 				    a_dim1 + 2], lda);
 | |
| 			}
 | |
| 
 | |
| /*                    Bidiagonalize R in A */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left vectors bidiagonalizing R */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
 | |
| 				work[itauq], &u[u_offset], ldu, &work[iwork], 
 | |
| 				&i__2, &ierr)
 | |
| 				;
 | |
| 
 | |
| /*                    Generate right vectors bidiagonalizing R in A */
 | |
| /*                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in A */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[
 | |
| 				a_offset], lda, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntvas) {
 | |
| 
 | |
| /*                 Path 6 (M much larger than N, JOBU='S', JOBVT='S' */
 | |
| /*                         or 'A') */
 | |
| /*                 N left singular vectors to be computed in U and */
 | |
| /*                 N right singular vectors to be computed in VT */
 | |
| 
 | |
| 		    if (*lwork >= *n * *n + *n * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is N by N */
 | |
| 
 | |
| 			    ldwrku = *n;
 | |
| 			}
 | |
| 			itau = iu + ldwrku * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to WORK(IU), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
 | |
| 				, &ldwrku);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IU), copying result to VT */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
 | |
| 				 ldvt);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in VT */
 | |
| /*                    (CWorkspace: need   N*N+3*N-1, */
 | |
| /*                                 prefer N*N+2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
 | |
| 				itaup], &work[iwork], &i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IU) and computing */
 | |
| /*                    right singular vectors of R in VT */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &work[iu], &ldwrku, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in A by left singular vectors of R in */
 | |
| /*                    WORK(IU), storing result in U */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
 | |
| 				work[iu], &ldwrku, &c_b1, &u[u_offset], ldu);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to VT, zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[
 | |
| 				    vt_dim1 + 2], ldvt);
 | |
| 			}
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in VT */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie],
 | |
| 				 &work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left bidiagonalizing vectors */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, 
 | |
| 				&work[itauq], &u[u_offset], ldu, &work[iwork],
 | |
| 				 &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in VT */
 | |
| /*                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
 | |
| 				itaup], &work[iwork], &i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntua) {
 | |
| 
 | |
| 		if (wntvn) {
 | |
| 
 | |
| /*                 Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
 | |
| /*                 M left singular vectors to be computed in U and */
 | |
| /*                 no right singular vectors to be computed */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *n * 3;
 | |
| 		    if (*lwork >= *n * *n + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			ir = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *n) {
 | |
| 
 | |
| /*                       WORK(IR) is LDA by N */
 | |
| 
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Copy R to WORK(IR), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1]
 | |
| 				, &ldwrkr);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IR) */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], 
 | |
| 				cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1, 
 | |
| 				&rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in U by left singular vectors of R in */
 | |
| /*                    WORK(IR), storing result in A */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
 | |
| 				work[ir], &ldwrkr, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy left singular vectors of A from A to U */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need N+M, prefer N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Zero out below R in A */
 | |
| 
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
 | |
| 				    a_dim1 + 2], lda);
 | |
| 			}
 | |
| 
 | |
| /*                    Bidiagonalize R in A */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left bidiagonalizing vectors */
 | |
| /*                    in A */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
 | |
| 				work[itauq], &u[u_offset], ldu, &work[iwork], 
 | |
| 				&i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], 
 | |
| 				cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 				rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntvo) {
 | |
| 
 | |
| /*                 Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
 | |
| /*                 M left singular vectors to be computed in U and */
 | |
| /*                 N right singular vectors to be overwritten on A */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *n * 3;
 | |
| 		    if (*lwork >= (*n << 1) * *n + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + (*lda << 1) * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N and WORK(IR) is LDA by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else if (*lwork >= wrkbl + (*lda + *n) * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is N by N and WORK(IR) is N by N */
 | |
| 
 | |
| 			    ldwrku = *n;
 | |
| 			    ir = iu + ldwrku * *n;
 | |
| 			    ldwrkr = *n;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to WORK(IU), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
 | |
| 				, &ldwrku);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IU), copying result to */
 | |
| /*                    WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*N*N+3*N, */
 | |
| /*                                 prefer 2*N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need   N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*N*N+3*N-1, */
 | |
| /*                                 prefer 2*N*N+2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IU) and computing */
 | |
| /*                    right singular vectors of R in WORK(IR) */
 | |
| /*                    (CWorkspace: need 2*N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in U by left singular vectors of R in */
 | |
| /*                    WORK(IU), storing result in A */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
 | |
| 				work[iu], &ldwrku, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy left singular vectors of A from A to U */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Copy right singular vectors of R from WORK(IR) to A */
 | |
| 
 | |
| 			clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], 
 | |
| 				lda);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need N+M, prefer N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Zero out below R in A */
 | |
| 
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
 | |
| 				    a_dim1 + 2], lda);
 | |
| 			}
 | |
| 
 | |
| /*                    Bidiagonalize R in A */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left bidiagonalizing vectors */
 | |
| /*                    in A */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
 | |
| 				work[itauq], &u[u_offset], ldu, &work[iwork], 
 | |
| 				&i__2, &ierr)
 | |
| 				;
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in A */
 | |
| /*                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in A */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[
 | |
| 				a_offset], lda, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntvas) {
 | |
| 
 | |
| /*                 Path 9 (M much larger than N, JOBU='A', JOBVT='S' */
 | |
| /*                         or 'A') */
 | |
| /*                 M left singular vectors to be computed in U and */
 | |
| /*                 N right singular vectors to be computed in VT */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *n * 3;
 | |
| 		    if (*lwork >= *n * *n + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *n) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is N by N */
 | |
| 
 | |
| 			    ldwrku = *n;
 | |
| 			}
 | |
| 			itau = iu + ldwrku * *n;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R to WORK(IU), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *n - 1;
 | |
| 			i__3 = *n - 1;
 | |
| 			claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
 | |
| 				, &ldwrku);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in WORK(IU), copying result to VT */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
 | |
| 				 ldvt);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in VT */
 | |
| /*                    (CWorkspace: need   N*N+3*N-1, */
 | |
| /*                                 prefer N*N+2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: need   0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
 | |
| 				itaup], &work[iwork], &i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of R in WORK(IU) and computing */
 | |
| /*                    right singular vectors of R in VT */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &work[iu], &ldwrku, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply Q in U by left singular vectors of R in */
 | |
| /*                    WORK(IU), storing result in A */
 | |
| /*                    (CWorkspace: need N*N) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
 | |
| 				work[iu], &ldwrku, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy left singular vectors of A from A to U */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *n;
 | |
| 
 | |
| /*                    Compute A=Q*R, copying result to U */
 | |
| /*                    (CWorkspace: need 2*N, prefer N+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate Q in U */
 | |
| /*                    (CWorkspace: need N+M, prefer N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy R from A to VT, zeroing out below it */
 | |
| 
 | |
| 			clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 			if (*n > 1) {
 | |
| 			    i__2 = *n - 1;
 | |
| 			    i__3 = *n - 1;
 | |
| 			    claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[
 | |
| 				    vt_dim1 + 2], ldvt);
 | |
| 			}
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *n;
 | |
| 			iwork = itaup + *n;
 | |
| 
 | |
| /*                    Bidiagonalize R in VT */
 | |
| /*                    (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
 | |
| /*                    (RWorkspace: need N) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie],
 | |
| 				 &work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply Q in U by left bidiagonalizing vectors */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, 
 | |
| 				&work[itauq], &u[u_offset], ldu, &work[iwork],
 | |
| 				 &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in VT */
 | |
| /*                    (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
 | |
| 				itaup], &work[iwork], &i__2, &ierr)
 | |
| 				;
 | |
| 			irwork = ie + *n;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           M .LT. MNTHR */
 | |
| 
 | |
| /*           Path 10 (M at least N, but not much larger) */
 | |
| /*           Reduce to bidiagonal form without QR decomposition */
 | |
| 
 | |
| 	    ie = 1;
 | |
| 	    itauq = 1;
 | |
| 	    itaup = itauq + *n;
 | |
| 	    iwork = itaup + *n;
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
 | |
| /*           (RWorkspace: need N) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[iwork], &i__2, &ierr);
 | |
| 	    if (wntuas) {
 | |
| 
 | |
| /*              If left singular vectors desired in U, copy result to U */
 | |
| /*              and generate left bidiagonalizing vectors in U */
 | |
| /*              (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		if (wntus) {
 | |
| 		    ncu = *n;
 | |
| 		}
 | |
| 		if (wntua) {
 | |
| 		    ncu = *m;
 | |
| 		}
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], &
 | |
| 			work[iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntvas) {
 | |
| 
 | |
| /*              If right singular vectors desired in VT, copy result to */
 | |
| /*              VT and generate right bidiagonalizing vectors in VT */
 | |
| /*              (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
 | |
| 			work[iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntuo) {
 | |
| 
 | |
| /*              If left singular vectors desired in A, generate left */
 | |
| /*              bidiagonalizing vectors in A */
 | |
| /*              (CWorkspace: need 3*N, prefer 2*N+N*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[
 | |
| 			iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntvo) {
 | |
| 
 | |
| /*              If right singular vectors desired in A, generate right */
 | |
| /*              bidiagonalizing vectors in A */
 | |
| /*              (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[
 | |
| 			iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    irwork = ie + *n;
 | |
| 	    if (wntuas || wntuo) {
 | |
| 		nru = *m;
 | |
| 	    }
 | |
| 	    if (wntun) {
 | |
| 		nru = 0;
 | |
| 	    }
 | |
| 	    if (wntvas || wntvo) {
 | |
| 		ncvt = *n;
 | |
| 	    }
 | |
| 	    if (wntvn) {
 | |
| 		ncvt = 0;
 | |
| 	    }
 | |
| 	    if (! wntuo && ! wntvo) {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in U and computing right singular */
 | |
| /*              vectors in VT */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    } else if (! wntuo && wntvo) {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in U and computing right singular */
 | |
| /*              vectors in A */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[
 | |
| 			a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    } else {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in A and computing right singular */
 | |
| /*              vectors in VT */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        A has more columns than rows. If A has sufficiently more */
 | |
| /*        columns than rows, first reduce using the LQ decomposition (if */
 | |
| /*        sufficient workspace available) */
 | |
| 
 | |
| 	if (*n >= mnthr) {
 | |
| 
 | |
| 	    if (wntvn) {
 | |
| 
 | |
| /*              Path 1t(N much larger than M, JOBVT='N') */
 | |
| /*              No right singular vectors to be computed */
 | |
| 
 | |
| 		itau = 1;
 | |
| 		iwork = itau + *m;
 | |
| 
 | |
| /*              Compute A=L*Q */
 | |
| /*              (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
 | |
| 			i__2, &ierr);
 | |
| 
 | |
| /*              Zero out above L */
 | |
| 
 | |
| 		i__2 = *m - 1;
 | |
| 		i__3 = *m - 1;
 | |
| 		claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1]
 | |
| 			, lda);
 | |
| 		ie = 1;
 | |
| 		itauq = 1;
 | |
| 		itaup = itauq + *m;
 | |
| 		iwork = itaup + *m;
 | |
| 
 | |
| /*              Bidiagonalize L in A */
 | |
| /*              (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*              (RWorkspace: need M) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
 | |
| 			itauq], &work[itaup], &work[iwork], &i__2, &ierr);
 | |
| 		if (wntuo || wntuas) {
 | |
| 
 | |
| /*                 If left singular vectors desired, generate Q */
 | |
| /*                 (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], &
 | |
| 			    work[iwork], &i__2, &ierr);
 | |
| 		}
 | |
| 		irwork = ie + *m;
 | |
| 		nru = 0;
 | |
| 		if (wntuo || wntuas) {
 | |
| 		    nru = *m;
 | |
| 		}
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, computing left singular */
 | |
| /*              vectors of A in A if desired */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &rwork[ie], cdum, &
 | |
| 			c__1, &a[a_offset], lda, cdum, &c__1, &rwork[irwork], 
 | |
| 			info);
 | |
| 
 | |
| /*              If left singular vectors desired in U, copy them there */
 | |
| 
 | |
| 		if (wntuas) {
 | |
| 		    clacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntvo && wntun) {
 | |
| 
 | |
| /*              Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
 | |
| /*              M right singular vectors to be overwritten on A and */
 | |
| /*              no left singular vectors to be computed */
 | |
| 
 | |
| 		if (*lwork >= *m * *m + *m * 3) {
 | |
| 
 | |
| /*                 Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ir = 1;
 | |
| /* Computing MAX */
 | |
| 		    i__2 = wrkbl, i__3 = *lda * *n;
 | |
| 		    if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is LDA by M */
 | |
| 
 | |
| 			ldwrku = *lda;
 | |
| 			chunk = *n;
 | |
| 			ldwrkr = *lda;
 | |
| 		    } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 			i__2 = wrkbl, i__3 = *lda * *n;
 | |
| 			if (*lwork >= f2cmax(i__2,i__3) + *m * *m) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    chunk = *n;
 | |
| 			    ldwrkr = *m;
 | |
| 			} else {
 | |
| 
 | |
| /*                    WORK(IU) is M by CHUNK and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			    chunk = (*lwork - *m * *m) / *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 		    }
 | |
| 		    itau = ir + ldwrkr * *m;
 | |
| 		    iwork = itau + *m;
 | |
| 
 | |
| /*                 Compute A=L*Q */
 | |
| /*                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__2, &ierr);
 | |
| 
 | |
| /*                 Copy L to WORK(IR) and zero out above it */
 | |
| 
 | |
| 		    clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr);
 | |
| 		    i__2 = *m - 1;
 | |
| 		    i__3 = *m - 1;
 | |
| 		    claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 
 | |
| 			    ldwrkr], &ldwrkr);
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__2, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *m;
 | |
| 		    iwork = itaup + *m;
 | |
| 
 | |
| /*                 Bidiagonalize L in WORK(IR) */
 | |
| /*                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                 (RWorkspace: need M) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 			    work[itauq], &work[itaup], &work[iwork], &i__2, &
 | |
| 			    ierr);
 | |
| 
 | |
| /*                 Generate right vectors bidiagonalizing L */
 | |
| /*                 (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
 | |
| 			    work[iwork], &i__2, &ierr);
 | |
| 		    irwork = ie + *m;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing right */
 | |
| /*                 singular vectors of L in WORK(IR) */
 | |
| /*                 (CWorkspace: need M*M) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &work[
 | |
| 			    ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &rwork[
 | |
| 			    irwork], info);
 | |
| 		    iu = itauq;
 | |
| 
 | |
| /*                 Multiply right singular vectors of L in WORK(IR) by Q */
 | |
| /*                 in A, storing result in WORK(IU) and copying to A */
 | |
| /*                 (CWorkspace: need M*M+M, prefer M*M+M*N) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    i__3 = chunk;
 | |
| 		    for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
 | |
| 			     i__3) {
 | |
| /* Computing MIN */
 | |
| 			i__4 = *n - i__ + 1;
 | |
| 			blk = f2cmin(i__4,chunk);
 | |
| 			cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], &
 | |
| 				ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, &
 | |
| 				work[iu], &ldwrku);
 | |
| 			clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * 
 | |
| 				a_dim1 + 1], lda);
 | |
| /* L30: */
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ie = 1;
 | |
| 		    itauq = 1;
 | |
| 		    itaup = itauq + *m;
 | |
| 		    iwork = itaup + *m;
 | |
| 
 | |
| /*                 Bidiagonalize A */
 | |
| /*                 (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
 | |
| /*                 (RWorkspace: need M) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
 | |
| 			    itauq], &work[itaup], &work[iwork], &i__3, &ierr);
 | |
| 
 | |
| /*                 Generate right vectors bidiagonalizing A */
 | |
| /*                 (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
 | |
| 			    work[iwork], &i__3, &ierr);
 | |
| 		    irwork = ie + *m;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing right */
 | |
| /*                 singular vectors of A in A */
 | |
| /*                 (CWorkspace: 0) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("L", m, n, &c__0, &c__0, &s[1], &rwork[ie], &a[
 | |
| 			    a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[
 | |
| 			    irwork], info);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntvo && wntuas) {
 | |
| 
 | |
| /*              Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */
 | |
| /*              M right singular vectors to be overwritten on A and */
 | |
| /*              M left singular vectors to be computed in U */
 | |
| 
 | |
| 		if (*lwork >= *m * *m + *m * 3) {
 | |
| 
 | |
| /*                 Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    ir = 1;
 | |
| /* Computing MAX */
 | |
| 		    i__3 = wrkbl, i__2 = *lda * *n;
 | |
| 		    if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is LDA by M */
 | |
| 
 | |
| 			ldwrku = *lda;
 | |
| 			chunk = *n;
 | |
| 			ldwrkr = *lda;
 | |
| 		    } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 			i__3 = wrkbl, i__2 = *lda * *n;
 | |
| 			if (*lwork >= f2cmax(i__3,i__2) + *m * *m) {
 | |
| 
 | |
| /*                    WORK(IU) is LDA by N and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    chunk = *n;
 | |
| 			    ldwrkr = *m;
 | |
| 			} else {
 | |
| 
 | |
| /*                    WORK(IU) is M by CHUNK and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			    chunk = (*lwork - *m * *m) / *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 		    }
 | |
| 		    itau = ir + ldwrkr * *m;
 | |
| 		    iwork = itau + *m;
 | |
| 
 | |
| /*                 Compute A=L*Q */
 | |
| /*                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__3, &ierr);
 | |
| 
 | |
| /*                 Copy L to U, zeroing about above it */
 | |
| 
 | |
| 		    clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		    i__3 = *m - 1;
 | |
| 		    i__2 = *m - 1;
 | |
| 		    claset_("U", &i__3, &i__2, &c_b1, &c_b1, &u[(u_dim1 << 1) 
 | |
| 			    + 1], ldu);
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__3, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *m;
 | |
| 		    iwork = itaup + *m;
 | |
| 
 | |
| /*                 Bidiagonalize L in U, copying result to WORK(IR) */
 | |
| /*                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                 (RWorkspace: need M) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[
 | |
| 			    itauq], &work[itaup], &work[iwork], &i__3, &ierr);
 | |
| 		    clacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr);
 | |
| 
 | |
| /*                 Generate right vectors bidiagonalizing L in WORK(IR) */
 | |
| /*                 (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
 | |
| 			    work[iwork], &i__3, &ierr);
 | |
| 
 | |
| /*                 Generate left vectors bidiagonalizing L in U */
 | |
| /*                 (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
 | |
| 			    work[iwork], &i__3, &ierr);
 | |
| 		    irwork = ie + *m;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of L in U, and computing right */
 | |
| /*                 singular vectors of L in WORK(IR) */
 | |
| /*                 (CWorkspace: need M*M) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ir],
 | |
| 			     &ldwrkr, &u[u_offset], ldu, cdum, &c__1, &rwork[
 | |
| 			    irwork], info);
 | |
| 		    iu = itauq;
 | |
| 
 | |
| /*                 Multiply right singular vectors of L in WORK(IR) by Q */
 | |
| /*                 in A, storing result in WORK(IU) and copying to A */
 | |
| /*                 (CWorkspace: need M*M+M, prefer M*M+M*N)) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__3 = *n;
 | |
| 		    i__2 = chunk;
 | |
| 		    for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
 | |
| 			     i__2) {
 | |
| /* Computing MIN */
 | |
| 			i__4 = *n - i__ + 1;
 | |
| 			blk = f2cmin(i__4,chunk);
 | |
| 			cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], &
 | |
| 				ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, &
 | |
| 				work[iu], &ldwrku);
 | |
| 			clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * 
 | |
| 				a_dim1 + 1], lda);
 | |
| /* L40: */
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 		    itau = 1;
 | |
| 		    iwork = itau + *m;
 | |
| 
 | |
| /*                 Compute A=L*Q */
 | |
| /*                 (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
 | |
| 			    , &i__2, &ierr);
 | |
| 
 | |
| /*                 Copy L to U, zeroing out above it */
 | |
| 
 | |
| 		    clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		    i__2 = *m - 1;
 | |
| 		    i__3 = *m - 1;
 | |
| 		    claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 << 1) 
 | |
| 			    + 1], ldu);
 | |
| 
 | |
| /*                 Generate Q in A */
 | |
| /*                 (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
 | |
| 			    iwork], &i__2, &ierr);
 | |
| 		    ie = 1;
 | |
| 		    itauq = itau;
 | |
| 		    itaup = itauq + *m;
 | |
| 		    iwork = itaup + *m;
 | |
| 
 | |
| /*                 Bidiagonalize L in U */
 | |
| /*                 (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                 (RWorkspace: need M) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[
 | |
| 			    itauq], &work[itaup], &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                 Multiply right vectors bidiagonalizing L by Q in A */
 | |
| /*                 (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &work[
 | |
| 			    itaup], &a[a_offset], lda, &work[iwork], &i__2, &
 | |
| 			    ierr);
 | |
| 
 | |
| /*                 Generate left vectors bidiagonalizing L in U */
 | |
| /*                 (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                 (RWorkspace: 0) */
 | |
| 
 | |
| 		    i__2 = *lwork - iwork + 1;
 | |
| 		    cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
 | |
| 			    work[iwork], &i__2, &ierr);
 | |
| 		    irwork = ie + *m;
 | |
| 
 | |
| /*                 Perform bidiagonal QR iteration, computing left */
 | |
| /*                 singular vectors of A in U and computing right */
 | |
| /*                 singular vectors of A in A */
 | |
| /*                 (CWorkspace: 0) */
 | |
| /*                 (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		    cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &a[
 | |
| 			    a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 			    rwork[irwork], info);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntvs) {
 | |
| 
 | |
| 		if (wntun) {
 | |
| 
 | |
| /*                 Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
 | |
| /*                 M right singular vectors to be computed in VT and */
 | |
| /*                 no left singular vectors to be computed */
 | |
| 
 | |
| 		    if (*lwork >= *m * *m + *m * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			ir = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *m) {
 | |
| 
 | |
| /*                       WORK(IR) is LDA by M */
 | |
| 
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to WORK(IR), zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 
 | |
| 				ldwrkr], &ldwrkr);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IR) */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right vectors bidiagonalizing L in */
 | |
| /*                    WORK(IR) */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing right */
 | |
| /*                    singular vectors of L in WORK(IR) */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &
 | |
| 				work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &
 | |
| 				rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IR) by */
 | |
| /*                    Q in A, storing result in VT */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, &
 | |
| 				a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy result to VT */
 | |
| 
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Zero out above L in A */
 | |
| 
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
 | |
| 				 1) + 1], lda);
 | |
| 
 | |
| /*                    Bidiagonalize L in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right vectors bidiagonalizing L by Q in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], &
 | |
| 				vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntuo) {
 | |
| 
 | |
| /*                 Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
 | |
| /*                 M right singular vectors to be computed in VT and */
 | |
| /*                 M left singular vectors to be overwritten on A */
 | |
| 
 | |
| 		    if (*lwork >= (*m << 1) * *m + *m * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + (*lda << 1) * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M and WORK(IR) is LDA by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else if (*lwork >= wrkbl + (*lda + *m) * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is M by M and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q */
 | |
| /*                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to WORK(IU), zeroing out below it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 
 | |
| 				ldwrku], &ldwrku);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IU), copying result to */
 | |
| /*                    WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*M*M+3*M, */
 | |
| /*                                 prefer 2*M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need   M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need   2*M*M+3*M-1, */
 | |
| /*                                 prefer 2*M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of L in WORK(IR) and computing */
 | |
| /*                    right singular vectors of L in WORK(IU) */
 | |
| /*                    (CWorkspace: need 2*M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IU) by */
 | |
| /*                    Q in A, storing result in VT */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
 | |
| 				a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
 | |
| 
 | |
| /*                    Copy left singular vectors of L to A */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], 
 | |
| 				lda);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Zero out above L in A */
 | |
| 
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
 | |
| 				 1) + 1], lda);
 | |
| 
 | |
| /*                    Bidiagonalize L in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right vectors bidiagonalizing L by Q in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors of L in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in A and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &a[a_offset], lda, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntuas) {
 | |
| 
 | |
| /*                 Path 6t(N much larger than M, JOBU='S' or 'A', */
 | |
| /*                         JOBVT='S') */
 | |
| /*                 M right singular vectors to be computed in VT and */
 | |
| /*                 M left singular vectors to be computed in U */
 | |
| 
 | |
| 		    if (*lwork >= *m * *m + *m * 3) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by N */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			}
 | |
| 			itau = iu + ldwrku * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to WORK(IU), zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 
 | |
| 				ldwrku], &ldwrku);
 | |
| 
 | |
| /*                    Generate Q in A */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IU), copying result to U */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need   M*M+3*M-1, */
 | |
| /*                                 prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in U */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of L in U and computing right */
 | |
| /*                    singular vectors of L in WORK(IU) */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1, 
 | |
| 				&rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IU) by */
 | |
| /*                    Q in A, storing result in VT */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
 | |
| 				a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to U, zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 <<
 | |
| 				 1) + 1], ldu);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in U */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right bidiagonalizing vectors in U by Q */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in U */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntva) {
 | |
| 
 | |
| 		if (wntun) {
 | |
| 
 | |
| /*                 Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
 | |
| /*                 N right singular vectors to be computed in VT and */
 | |
| /*                 no left singular vectors to be computed */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *m * 3;
 | |
| 		    if (*lwork >= *m * *m + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			ir = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *m) {
 | |
| 
 | |
| /*                       WORK(IR) is LDA by M */
 | |
| 
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Copy L to WORK(IR), zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 
 | |
| 				ldwrkr], &ldwrkr);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IR) */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need   M*M+3*M-1, */
 | |
| /*                                 prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing right */
 | |
| /*                    singular vectors of L in WORK(IR) */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &
 | |
| 				work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &
 | |
| 				rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IR) by */
 | |
| /*                    Q in VT, storing result in A */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, &
 | |
| 				vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy right singular vectors of A from A to VT */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need M+N, prefer M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Zero out above L in A */
 | |
| 
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
 | |
| 				 1) + 1], lda);
 | |
| 
 | |
| /*                    Bidiagonalize L in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right bidiagonalizing vectors in A by Q */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], &
 | |
| 				vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntuo) {
 | |
| 
 | |
| /*                 Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
 | |
| /*                 N right singular vectors to be computed in VT and */
 | |
| /*                 M left singular vectors to be overwritten on A */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *m * 3;
 | |
| 		    if (*lwork >= (*m << 1) * *m + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + (*lda << 1) * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M and WORK(IR) is LDA by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *lda;
 | |
| 			} else if (*lwork >= wrkbl + (*lda + *m) * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is M by M and WORK(IR) is M by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			    ir = iu + ldwrku * *m;
 | |
| 			    ldwrkr = *m;
 | |
| 			}
 | |
| 			itau = ir + ldwrkr * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to WORK(IU), zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 
 | |
| 				ldwrku], &ldwrku);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IU), copying result to */
 | |
| /*                    WORK(IR) */
 | |
| /*                    (CWorkspace: need   2*M*M+3*M, */
 | |
| /*                                 prefer 2*M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need   M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
 | |
| 				ldwrkr);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need   2*M*M+3*M-1, */
 | |
| /*                                 prefer 2*M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in WORK(IR) */
 | |
| /*                    (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of L in WORK(IR) and computing */
 | |
| /*                    right singular vectors of L in WORK(IU) */
 | |
| /*                    (CWorkspace: need 2*M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1,
 | |
| 				 &rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IU) by */
 | |
| /*                    Q in VT, storing result in A */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
 | |
| 				vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy right singular vectors of A from A to VT */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Copy left singular vectors of A from WORK(IR) to A */
 | |
| 
 | |
| 			clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], 
 | |
| 				lda);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need M+N, prefer M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Zero out above L in A */
 | |
| 
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
 | |
| 				 1) + 1], lda);
 | |
| 
 | |
| /*                    Bidiagonalize L in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right bidiagonalizing vectors in A by Q */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in A */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in A and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &a[a_offset], lda, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else if (wntuas) {
 | |
| 
 | |
| /*                 Path 9t(N much larger than M, JOBU='S' or 'A', */
 | |
| /*                         JOBVT='A') */
 | |
| /*                 N right singular vectors to be computed in VT and */
 | |
| /*                 M left singular vectors to be computed in U */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		    i__2 = *n + *m, i__3 = *m * 3;
 | |
| 		    if (*lwork >= *m * *m + f2cmax(i__2,i__3)) {
 | |
| 
 | |
| /*                    Sufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			iu = 1;
 | |
| 			if (*lwork >= wrkbl + *lda * *m) {
 | |
| 
 | |
| /*                       WORK(IU) is LDA by M */
 | |
| 
 | |
| 			    ldwrku = *lda;
 | |
| 			} else {
 | |
| 
 | |
| /*                       WORK(IU) is M by M */
 | |
| 
 | |
| 			    ldwrku = *m;
 | |
| 			}
 | |
| 			itau = iu + ldwrku * *m;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to WORK(IU), zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
 | |
| 				ldwrku);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 
 | |
| 				ldwrku], &ldwrku);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in WORK(IU), copying result to U */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 			clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], 
 | |
| 				ldu);
 | |
| 
 | |
| /*                    Generate right bidiagonalizing vectors in WORK(IU) */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
 | |
| 				, &work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in U */
 | |
| /*                    (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of L in U and computing right */
 | |
| /*                    singular vectors of L in WORK(IU) */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
 | |
| 				iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1, 
 | |
| 				&rwork[irwork], info);
 | |
| 
 | |
| /*                    Multiply right singular vectors of L in WORK(IU) by */
 | |
| /*                    Q in VT, storing result in A */
 | |
| /*                    (CWorkspace: need M*M) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
 | |
| 				vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*                    Copy right singular vectors of A from A to VT */
 | |
| 
 | |
| 			clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Insufficient workspace for a fast algorithm */
 | |
| 
 | |
| 			itau = 1;
 | |
| 			iwork = itau + *m;
 | |
| 
 | |
| /*                    Compute A=L*Q, copying result to VT */
 | |
| /*                    (CWorkspace: need 2*M, prefer M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 			clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], 
 | |
| 				ldvt);
 | |
| 
 | |
| /*                    Generate Q in VT */
 | |
| /*                    (CWorkspace: need M+N, prefer M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
 | |
| 				work[iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Copy L to U, zeroing out above it */
 | |
| 
 | |
| 			clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], 
 | |
| 				ldu);
 | |
| 			i__2 = *m - 1;
 | |
| 			i__3 = *m - 1;
 | |
| 			claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 <<
 | |
| 				 1) + 1], ldu);
 | |
| 			ie = 1;
 | |
| 			itauq = itau;
 | |
| 			itaup = itauq + *m;
 | |
| 			iwork = itaup + *m;
 | |
| 
 | |
| /*                    Bidiagonalize L in U */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
 | |
| /*                    (RWorkspace: need M) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &
 | |
| 				work[itauq], &work[itaup], &work[iwork], &
 | |
| 				i__2, &ierr);
 | |
| 
 | |
| /*                    Multiply right bidiagonalizing vectors in U by Q */
 | |
| /*                    in VT */
 | |
| /*                    (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &
 | |
| 				work[itaup], &vt[vt_offset], ldvt, &work[
 | |
| 				iwork], &i__2, &ierr);
 | |
| 
 | |
| /*                    Generate left bidiagonalizing vectors in U */
 | |
| /*                    (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*                    (RWorkspace: 0) */
 | |
| 
 | |
| 			i__2 = *lwork - iwork + 1;
 | |
| 			cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
 | |
| 				 &work[iwork], &i__2, &ierr);
 | |
| 			irwork = ie + *m;
 | |
| 
 | |
| /*                    Perform bidiagonal QR iteration, computing left */
 | |
| /*                    singular vectors of A in U and computing right */
 | |
| /*                    singular vectors of A in VT */
 | |
| /*                    (CWorkspace: 0) */
 | |
| /*                    (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 			cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 				vt_offset], ldvt, &u[u_offset], ldu, cdum, &
 | |
| 				c__1, &rwork[irwork], info);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           N .LT. MNTHR */
 | |
| 
 | |
| /*           Path 10t(N greater than M, but not much larger) */
 | |
| /*           Reduce to bidiagonal form without LQ decomposition */
 | |
| 
 | |
| 	    ie = 1;
 | |
| 	    itauq = 1;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    iwork = itaup + *m;
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
 | |
| /*           (RWorkspace: M) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[iwork], &i__2, &ierr);
 | |
| 	    if (wntuas) {
 | |
| 
 | |
| /*              If left singular vectors desired in U, copy result to U */
 | |
| /*              and generate left bidiagonalizing vectors in U */
 | |
| /*              (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
 | |
| 			iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntvas) {
 | |
| 
 | |
| /*              If right singular vectors desired in VT, copy result to */
 | |
| /*              VT and generate right bidiagonalizing vectors in VT */
 | |
| /*              (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
 | |
| 		if (wntva) {
 | |
| 		    nrvt = *n;
 | |
| 		}
 | |
| 		if (wntvs) {
 | |
| 		    nrvt = *m;
 | |
| 		}
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup], 
 | |
| 			&work[iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntuo) {
 | |
| 
 | |
| /*              If left singular vectors desired in A, generate left */
 | |
| /*              bidiagonalizing vectors in A */
 | |
| /*              (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[
 | |
| 			iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    if (wntvo) {
 | |
| 
 | |
| /*              If right singular vectors desired in A, generate right */
 | |
| /*              bidiagonalizing vectors in A */
 | |
| /*              (CWorkspace: need 3*M, prefer 2*M+M*NB) */
 | |
| /*              (RWorkspace: 0) */
 | |
| 
 | |
| 		i__2 = *lwork - iwork + 1;
 | |
| 		cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
 | |
| 			iwork], &i__2, &ierr);
 | |
| 	    }
 | |
| 	    irwork = ie + *m;
 | |
| 	    if (wntuas || wntuo) {
 | |
| 		nru = *m;
 | |
| 	    }
 | |
| 	    if (wntun) {
 | |
| 		nru = 0;
 | |
| 	    }
 | |
| 	    if (wntvas || wntvo) {
 | |
| 		ncvt = *n;
 | |
| 	    }
 | |
| 	    if (wntvn) {
 | |
| 		ncvt = 0;
 | |
| 	    }
 | |
| 	    if (! wntuo && ! wntvo) {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in U and computing right singular */
 | |
| /*              vectors in VT */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    } else if (! wntuo && wntvo) {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in U and computing right singular */
 | |
| /*              vectors in A */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[
 | |
| 			a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    } else {
 | |
| 
 | |
| /*              Perform bidiagonal QR iteration, if desired, computing */
 | |
| /*              left singular vectors in A and computing right singular */
 | |
| /*              vectors in VT */
 | |
| /*              (CWorkspace: 0) */
 | |
| /*              (RWorkspace: need BDSPAC) */
 | |
| 
 | |
| 		cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
 | |
| 			vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, &
 | |
| 			rwork[irwork], info);
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
|     if (iscl == 1) {
 | |
| 	if (anrm > bignum) {
 | |
| 	    slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, &ierr);
 | |
| 	}
 | |
| 	if (*info != 0 && anrm > bignum) {
 | |
| 	    i__2 = minmn - 1;
 | |
| 	    slascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &rwork[
 | |
| 		    ie], &minmn, &ierr);
 | |
| 	}
 | |
| 	if (anrm < smlnum) {
 | |
| 	    slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, &ierr);
 | |
| 	}
 | |
| 	if (*info != 0 && anrm < smlnum) {
 | |
| 	    i__2 = minmn - 1;
 | |
| 	    slascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &rwork[
 | |
| 		    ie], &minmn, &ierr);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Return optimal workspace in WORK(1) */
 | |
| 
 | |
|     work[1].r = (real) maxwrk, work[1].i = 0.f;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CGESVD */
 | |
| 
 | |
| } /* cgesvd_ */
 | |
| 
 |