261 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SQRT14
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
 | |
| *                        LDX, WORK, LWORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            LDA, LDX, LWORK, M, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), WORK( LWORK ), X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SQRT14 checks whether X is in the row space of A or A'.  It does so
 | |
| *> by scaling both X and A such that their norms are in the range
 | |
| *> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
 | |
| *> (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
 | |
| *> and returning the norm of the trailing triangle, scaled by
 | |
| *> MAX(M,N,NRHS)*eps.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, check for X in the row space of A
 | |
| *>          = 'T':  Transpose, check for X in the row space of A'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension (LDX,NRHS)
 | |
| *>          If TRANS = 'N', the N-by-NRHS matrix X.
 | |
| *>          IF TRANS = 'T', the M-by-NRHS matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          length of workspace array required
 | |
| *>          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
 | |
| *>          if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
 | |
|      $                 LDX, WORK, LWORK )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            LDA, LDX, LWORK, M, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), WORK( LWORK ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            TPSD
 | |
|       INTEGER            I, INFO, J, LDWORK
 | |
|       REAL               ANRM, ERR, XNRM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               RWORK( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGELQ2, SGEQR2, SLACPY, SLASCL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       SQRT14 = ZERO
 | |
|       IF( LSAME( TRANS, 'N' ) ) THEN
 | |
|          LDWORK = M + NRHS
 | |
|          TPSD = .FALSE.
 | |
|          IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
 | |
|             CALL XERBLA( 'SQRT14', 10 )
 | |
|             RETURN
 | |
|          ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|       ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | |
|          LDWORK = M
 | |
|          TPSD = .TRUE.
 | |
|          IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
 | |
|             CALL XERBLA( 'SQRT14', 10 )
 | |
|             RETURN
 | |
|          ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|       ELSE
 | |
|          CALL XERBLA( 'SQRT14', 1 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Copy and scale A
 | |
| *
 | |
|       CALL SLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
 | |
|       ANRM = SLANGE( 'M', M, N, WORK, LDWORK, RWORK )
 | |
|       IF( ANRM.NE.ZERO )
 | |
|      $   CALL SLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
 | |
| *
 | |
| *     Copy X or X' into the right place and scale it
 | |
| *
 | |
|       IF( TPSD ) THEN
 | |
| *
 | |
| *        Copy X into columns n+1:n+nrhs of work
 | |
| *
 | |
|          CALL SLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
 | |
|      $                LDWORK )
 | |
|          XNRM = SLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
 | |
|      $          RWORK )
 | |
|          IF( XNRM.NE.ZERO )
 | |
|      $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
 | |
|      $                   WORK( N*LDWORK+1 ), LDWORK, INFO )
 | |
|          ANRM = SLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
 | |
| *
 | |
| *        Compute QR factorization of X
 | |
| *
 | |
|          CALL SGEQR2( M, N+NRHS, WORK, LDWORK,
 | |
|      $                WORK( LDWORK*( N+NRHS )+1 ),
 | |
|      $                WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
 | |
|      $                INFO )
 | |
| *
 | |
| *        Compute largest entry in upper triangle of
 | |
| *        work(n+1:m,n+1:n+nrhs)
 | |
| *
 | |
|          ERR = ZERO
 | |
|          DO 20 J = N + 1, N + NRHS
 | |
|             DO 10 I = N + 1, MIN( M, J )
 | |
|                ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Copy X' into rows m+1:m+nrhs of work
 | |
| *
 | |
|          DO 40 I = 1, N
 | |
|             DO 30 J = 1, NRHS
 | |
|                WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
 | |
|    30       CONTINUE
 | |
|    40    CONTINUE
 | |
| *
 | |
|          XNRM = SLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
 | |
|          IF( XNRM.NE.ZERO )
 | |
|      $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
 | |
|      $                   LDWORK, INFO )
 | |
| *
 | |
| *        Compute LQ factorization of work
 | |
| *
 | |
|          CALL SGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
 | |
|      $                WORK( LDWORK*( N+1 )+1 ), INFO )
 | |
| *
 | |
| *        Compute largest entry in lower triangle in
 | |
| *        work(m+1:m+nrhs,m+1:n)
 | |
| *
 | |
|          ERR = ZERO
 | |
|          DO 60 J = M + 1, N
 | |
|             DO 50 I = J, LDWORK
 | |
|                ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       SQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SQRT14
 | |
| *
 | |
|       END
 |