180 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGET04
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDX, LDXACT, N, NRHS
 | |
| *       DOUBLE PRECISION   RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   X( LDX, * ), XACT( LDXACT, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGET04 computes the difference between a computed solution and the
 | |
| *> true solution to a system of linear equations.
 | |
| *>
 | |
| *> RESID =  ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
 | |
| *> where RCOND is the reciprocal of the condition number and EPS is the
 | |
| *> machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices X and XACT.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of columns of the matrices X and XACT.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          The computed solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is DOUBLE PRECISION array, dimension( LDX, NRHS )
 | |
| *>          The exact solution vectors.  Each vector is stored as a
 | |
| *>          column of the matrix XACT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDXACT
 | |
| *> \verbatim
 | |
| *>          LDXACT is INTEGER
 | |
| *>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal of the condition number of the coefficient
 | |
| *>          matrix in the system of equations.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The maximum over the NRHS solution vectors of
 | |
| *>          ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDX, LDXACT, N, NRHS
 | |
|       DOUBLE PRECISION   RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   X( LDX, * ), XACT( LDXACT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IX, J
 | |
|       DOUBLE PRECISION   DIFFNM, EPS, XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           IDAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0 or NRHS = 0.
 | |
| *
 | |
|       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if RCOND is invalid.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       IF( RCOND.LT.ZERO ) THEN
 | |
|          RESID = 1.0D0 / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the maximum of
 | |
| *        norm(X - XACT) / ( norm(XACT) * EPS )
 | |
| *     over all the vectors X and XACT .
 | |
| *
 | |
|       RESID = ZERO
 | |
|       DO 20 J = 1, NRHS
 | |
|          IX = IDAMAX( N, XACT( 1, J ), 1 )
 | |
|          XNORM = ABS( XACT( IX, J ) )
 | |
|          DIFFNM = ZERO
 | |
|          DO 10 I = 1, N
 | |
|             DIFFNM = MAX( DIFFNM, ABS( X( I, J )-XACT( I, J ) ) )
 | |
|    10    CONTINUE
 | |
|          IF( XNORM.LE.ZERO ) THEN
 | |
|             IF( DIFFNM.GT.ZERO )
 | |
|      $         RESID = 1.0D0 / EPS
 | |
|          ELSE
 | |
|             RESID = MAX( RESID, ( DIFFNM / XNORM )*RCOND )
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
|       IF( RESID*EPS.LT.1.0D0 )
 | |
|      $   RESID = RESID / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGET04
 | |
| *
 | |
|       END
 |