712 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DCHKGB
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
 | |
| *                          NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
 | |
| *                          X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            LA, LAFAC, NM, NN, NNB, NNS, NOUT
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 | |
| *      $                   NVAL( * )
 | |
| *       DOUBLE PRECISION   A( * ), AFAC( * ), B( * ), RWORK( * ),
 | |
| *      $                   WORK( * ), X( * ), XACT( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DCHKGB tests DGBTRF, -TRS, -RFS, and -CON
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NM
 | |
| *> \verbatim
 | |
| *>          NM is INTEGER
 | |
| *>          The number of values of M contained in the vector MVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MVAL
 | |
| *> \verbatim
 | |
| *>          MVAL is INTEGER array, dimension (NM)
 | |
| *>          The values of the matrix row dimension M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix column dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NNB
 | |
| *> \verbatim
 | |
| *>          NNB is INTEGER
 | |
| *>          The number of values of NB contained in the vector NBVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NBVAL
 | |
| *> \verbatim
 | |
| *>          NBVAL is INTEGER array, dimension (NNB)
 | |
| *>          The values of the blocksize NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NNS
 | |
| *> \verbatim
 | |
| *>          NNS is INTEGER
 | |
| *>          The number of values of NRHS contained in the vector NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSVAL
 | |
| *> \verbatim
 | |
| *>          NSVAL is INTEGER array, dimension (NNS)
 | |
| *>          The values of the number of right hand sides NRHS.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LA)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LA
 | |
| *> \verbatim
 | |
| *>          LA is INTEGER
 | |
| *>          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX
 | |
| *>          where KLMAX is the largest entry in the local array KLVAL,
 | |
| *>                KUMAX is the largest entry in the local array KUVAL and
 | |
| *>                NMAX is the largest entry in the input array NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is DOUBLE PRECISION array, dimension (LAFAC)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LAFAC
 | |
| *> \verbatim
 | |
| *>          LAFAC is INTEGER
 | |
| *>          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX
 | |
| *>          where KLMAX is the largest entry in the local array KLVAL,
 | |
| *>                KUMAX is the largest entry in the local array KUVAL and
 | |
| *>                NMAX is the largest entry in the input array NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 | |
| *>          where NSMAX is the largest entry in NSVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (NMAX*max(3,NSMAX,NMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (max(NMAX,2*NSMAX))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*NMAX)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
 | |
|      $                   NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
 | |
|      $                   X, XACT, WORK, RWORK, IWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            LA, LAFAC, NM, NN, NNB, NNS, NOUT
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 | |
|      $                   NVAL( * )
 | |
|       DOUBLE PRECISION   A( * ), AFAC( * ), B( * ), RWORK( * ),
 | |
|      $                   WORK( * ), X( * ), XACT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NTYPES, NTESTS
 | |
|       PARAMETER          ( NTYPES = 8, NTESTS = 7 )
 | |
|       INTEGER            NBW, NTRAN
 | |
|       PARAMETER          ( NBW = 4, NTRAN = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            TRFCON, ZEROT
 | |
|       CHARACTER          DIST, NORM, TRANS, TYPE, XTYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, I1, I2, IKL, IKU, IM, IMAT, IN, INB, INFO,
 | |
|      $                   IOFF, IRHS, ITRAN, IZERO, J, K, KL, KOFF, KU,
 | |
|      $                   LDA, LDAFAC, LDB, M, MODE, N, NB, NERRS, NFAIL,
 | |
|      $                   NIMAT, NKL, NKU, NRHS, NRUN
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, ANORMI, ANORMO, CNDNUM, RCOND,
 | |
|      $                   RCONDC, RCONDI, RCONDO
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       CHARACTER          TRANSS( NTRAN )
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 ), KLVAL( NBW ),
 | |
|      $                   KUVAL( NBW )
 | |
|       DOUBLE PRECISION   RESULT( NTESTS )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DGET06, DLANGB, DLANGE
 | |
|       EXTERNAL           DGET06, DLANGB, DLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALAERH, ALAHD, ALASUM, DCOPY, DERRGE, DGBCON,
 | |
|      $                   DGBRFS, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
 | |
|      $                   DGET04, DLACPY, DLARHS, DLASET, DLATB4, DLATMS,
 | |
|      $                   XLAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, NUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 1988, 1989, 1990, 1991 / ,
 | |
|      $                   TRANSS / 'N', 'T', 'C' /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Initialize constants and the random number seed.
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Double precision'
 | |
|       PATH( 2: 3 ) = 'GB'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       IF( TSTERR )
 | |
|      $   CALL DERRGE( PATH, NOUT )
 | |
|       INFOT = 0
 | |
|       CALL XLAENV( 2, 2 )
 | |
| *
 | |
| *     Initialize the first value for the lower and upper bandwidths.
 | |
| *
 | |
|       KLVAL( 1 ) = 0
 | |
|       KUVAL( 1 ) = 0
 | |
| *
 | |
| *     Do for each value of M in MVAL
 | |
| *
 | |
|       DO 160 IM = 1, NM
 | |
|          M = MVAL( IM )
 | |
| *
 | |
| *        Set values to use for the lower bandwidth.
 | |
| *
 | |
|          KLVAL( 2 ) = M + ( M+1 ) / 4
 | |
| *
 | |
| *        KLVAL( 2 ) = MAX( M-1, 0 )
 | |
| *
 | |
|          KLVAL( 3 ) = ( 3*M-1 ) / 4
 | |
|          KLVAL( 4 ) = ( M+1 ) / 4
 | |
| *
 | |
| *        Do for each value of N in NVAL
 | |
| *
 | |
|          DO 150 IN = 1, NN
 | |
|             N = NVAL( IN )
 | |
|             XTYPE = 'N'
 | |
| *
 | |
| *           Set values to use for the upper bandwidth.
 | |
| *
 | |
|             KUVAL( 2 ) = N + ( N+1 ) / 4
 | |
| *
 | |
| *           KUVAL( 2 ) = MAX( N-1, 0 )
 | |
| *
 | |
|             KUVAL( 3 ) = ( 3*N-1 ) / 4
 | |
|             KUVAL( 4 ) = ( N+1 ) / 4
 | |
| *
 | |
| *           Set limits on the number of loop iterations.
 | |
| *
 | |
|             NKL = MIN( M+1, 4 )
 | |
|             IF( N.EQ.0 )
 | |
|      $         NKL = 2
 | |
|             NKU = MIN( N+1, 4 )
 | |
|             IF( M.EQ.0 )
 | |
|      $         NKU = 2
 | |
|             NIMAT = NTYPES
 | |
|             IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $         NIMAT = 1
 | |
| *
 | |
|             DO 140 IKL = 1, NKL
 | |
| *
 | |
| *              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This
 | |
| *              order makes it easier to skip redundant values for small
 | |
| *              values of M.
 | |
| *
 | |
|                KL = KLVAL( IKL )
 | |
|                DO 130 IKU = 1, NKU
 | |
| *
 | |
| *                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This
 | |
| *                 order makes it easier to skip redundant values for
 | |
| *                 small values of N.
 | |
| *
 | |
|                   KU = KUVAL( IKU )
 | |
| *
 | |
| *                 Check that A and AFAC are big enough to generate this
 | |
| *                 matrix.
 | |
| *
 | |
|                   LDA = KL + KU + 1
 | |
|                   LDAFAC = 2*KL + KU + 1
 | |
|                   IF( ( LDA*N ).GT.LA .OR. ( LDAFAC*N ).GT.LAFAC ) THEN
 | |
|                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                  CALL ALAHD( NOUT, PATH )
 | |
|                      IF( N*( KL+KU+1 ).GT.LA ) THEN
 | |
|                         WRITE( NOUT, FMT = 9999 )LA, M, N, KL, KU,
 | |
|      $                     N*( KL+KU+1 )
 | |
|                         NERRS = NERRS + 1
 | |
|                      END IF
 | |
|                      IF( N*( 2*KL+KU+1 ).GT.LAFAC ) THEN
 | |
|                         WRITE( NOUT, FMT = 9998 )LAFAC, M, N, KL, KU,
 | |
|      $                     N*( 2*KL+KU+1 )
 | |
|                         NERRS = NERRS + 1
 | |
|                      END IF
 | |
|                      GO TO 130
 | |
|                   END IF
 | |
| *
 | |
|                   DO 120 IMAT = 1, NIMAT
 | |
| *
 | |
| *                    Do the tests only if DOTYPE( IMAT ) is true.
 | |
| *
 | |
|                      IF( .NOT.DOTYPE( IMAT ) )
 | |
|      $                  GO TO 120
 | |
| *
 | |
| *                    Skip types 2, 3, or 4 if the matrix size is too
 | |
| *                    small.
 | |
| *
 | |
|                      ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
 | |
|                      IF( ZEROT .AND. N.LT.IMAT-1 )
 | |
|      $                  GO TO 120
 | |
| *
 | |
|                      IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
 | |
| *
 | |
| *                       Set up parameters with DLATB4 and generate a
 | |
| *                       test matrix with DLATMS.
 | |
| *
 | |
|                         CALL DLATB4( PATH, IMAT, M, N, TYPE, KL, KU,
 | |
|      $                               ANORM, MODE, CNDNUM, DIST )
 | |
| *
 | |
|                         KOFF = MAX( 1, KU+2-N )
 | |
|                         DO 20 I = 1, KOFF - 1
 | |
|                            A( I ) = ZERO
 | |
|    20                   CONTINUE
 | |
|                         SRNAMT = 'DLATMS'
 | |
|                         CALL DLATMS( M, N, DIST, ISEED, TYPE, RWORK,
 | |
|      $                               MODE, CNDNUM, ANORM, KL, KU, 'Z',
 | |
|      $                               A( KOFF ), LDA, WORK, INFO )
 | |
| *
 | |
| *                       Check the error code from DLATMS.
 | |
| *
 | |
|                         IF( INFO.NE.0 ) THEN
 | |
|                            CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', M,
 | |
|      $                                  N, KL, KU, -1, IMAT, NFAIL,
 | |
|      $                                  NERRS, NOUT )
 | |
|                            GO TO 120
 | |
|                         END IF
 | |
|                      ELSE IF( IZERO.GT.0 ) THEN
 | |
| *
 | |
| *                       Use the same matrix for types 3 and 4 as for
 | |
| *                       type 2 by copying back the zeroed out column.
 | |
| *
 | |
|                         CALL DCOPY( I2-I1+1, B, 1, A( IOFF+I1 ), 1 )
 | |
|                      END IF
 | |
| *
 | |
| *                    For types 2, 3, and 4, zero one or more columns of
 | |
| *                    the matrix to test that INFO is returned correctly.
 | |
| *
 | |
|                      IZERO = 0
 | |
|                      IF( ZEROT ) THEN
 | |
|                         IF( IMAT.EQ.2 ) THEN
 | |
|                            IZERO = 1
 | |
|                         ELSE IF( IMAT.EQ.3 ) THEN
 | |
|                            IZERO = MIN( M, N )
 | |
|                         ELSE
 | |
|                            IZERO = MIN( M, N ) / 2 + 1
 | |
|                         END IF
 | |
|                         IOFF = ( IZERO-1 )*LDA
 | |
|                         IF( IMAT.LT.4 ) THEN
 | |
| *
 | |
| *                          Store the column to be zeroed out in B.
 | |
| *
 | |
|                            I1 = MAX( 1, KU+2-IZERO )
 | |
|                            I2 = MIN( KL+KU+1, KU+1+( M-IZERO ) )
 | |
|                            CALL DCOPY( I2-I1+1, A( IOFF+I1 ), 1, B, 1 )
 | |
| *
 | |
|                            DO 30 I = I1, I2
 | |
|                               A( IOFF+I ) = ZERO
 | |
|    30                      CONTINUE
 | |
|                         ELSE
 | |
|                            DO 50 J = IZERO, N
 | |
|                               DO 40 I = MAX( 1, KU+2-J ),
 | |
|      $                                MIN( KL+KU+1, KU+1+( M-J ) )
 | |
|                                  A( IOFF+I ) = ZERO
 | |
|    40                         CONTINUE
 | |
|                               IOFF = IOFF + LDA
 | |
|    50                      CONTINUE
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    These lines, if used in place of the calls in the
 | |
| *                    loop over INB, cause the code to bomb on a Sun
 | |
| *                    SPARCstation.
 | |
| *
 | |
| *                     ANORMO = DLANGB( 'O', N, KL, KU, A, LDA, RWORK )
 | |
| *                     ANORMI = DLANGB( 'I', N, KL, KU, A, LDA, RWORK )
 | |
| *
 | |
| *                    Do for each blocksize in NBVAL
 | |
| *
 | |
|                      DO 110 INB = 1, NNB
 | |
|                         NB = NBVAL( INB )
 | |
|                         CALL XLAENV( 1, NB )
 | |
| *
 | |
| *                       Compute the LU factorization of the band matrix.
 | |
| *
 | |
|                         IF( M.GT.0 .AND. N.GT.0 )
 | |
|      $                     CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
 | |
|      $                                  AFAC( KL+1 ), LDAFAC )
 | |
|                         SRNAMT = 'DGBTRF'
 | |
|                         CALL DGBTRF( M, N, KL, KU, AFAC, LDAFAC, IWORK,
 | |
|      $                               INFO )
 | |
| *
 | |
| *                       Check error code from DGBTRF.
 | |
| *
 | |
|                         IF( INFO.NE.IZERO )
 | |
|      $                     CALL ALAERH( PATH, 'DGBTRF', INFO, IZERO,
 | |
|      $                                  ' ', M, N, KL, KU, NB, IMAT,
 | |
|      $                                  NFAIL, NERRS, NOUT )
 | |
|                         TRFCON = .FALSE.
 | |
| *
 | |
| *+    TEST 1
 | |
| *                       Reconstruct matrix from factors and compute
 | |
| *                       residual.
 | |
| *
 | |
|                         CALL DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC,
 | |
|      $                               IWORK, WORK, RESULT( 1 ) )
 | |
| *
 | |
| *                       Print information about the tests so far that
 | |
| *                       did not pass the threshold.
 | |
| *
 | |
|                         IF( RESULT( 1 ).GE.THRESH ) THEN
 | |
|                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                        CALL ALAHD( NOUT, PATH )
 | |
|                            WRITE( NOUT, FMT = 9997 )M, N, KL, KU, NB,
 | |
|      $                        IMAT, 1, RESULT( 1 )
 | |
|                            NFAIL = NFAIL + 1
 | |
|                         END IF
 | |
|                         NRUN = NRUN + 1
 | |
| *
 | |
| *                       Skip the remaining tests if this is not the
 | |
| *                       first block size or if M .ne. N.
 | |
| *
 | |
|                         IF( INB.GT.1 .OR. M.NE.N )
 | |
|      $                     GO TO 110
 | |
| *
 | |
|                         ANORMO = DLANGB( 'O', N, KL, KU, A, LDA, RWORK )
 | |
|                         ANORMI = DLANGB( 'I', N, KL, KU, A, LDA, RWORK )
 | |
| *
 | |
|                         IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *                          Form the inverse of A so we can get a good
 | |
| *                          estimate of CNDNUM = norm(A) * norm(inv(A)).
 | |
| *
 | |
|                            LDB = MAX( 1, N )
 | |
|                            CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
 | |
|      $                                  LDB )
 | |
|                            SRNAMT = 'DGBTRS'
 | |
|                            CALL DGBTRS( 'No transpose', N, KL, KU, N,
 | |
|      $                                  AFAC, LDAFAC, IWORK, WORK, LDB,
 | |
|      $                                  INFO )
 | |
| *
 | |
| *                          Compute the 1-norm condition number of A.
 | |
| *
 | |
|                            AINVNM = DLANGE( 'O', N, N, WORK, LDB,
 | |
|      $                              RWORK )
 | |
|                            IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                               RCONDO = ONE
 | |
|                            ELSE
 | |
|                               RCONDO = ( ONE / ANORMO ) / AINVNM
 | |
|                            END IF
 | |
| *
 | |
| *                          Compute the infinity-norm condition number of
 | |
| *                          A.
 | |
| *
 | |
|                            AINVNM = DLANGE( 'I', N, N, WORK, LDB,
 | |
|      $                              RWORK )
 | |
|                            IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                               RCONDI = ONE
 | |
|                            ELSE
 | |
|                               RCONDI = ( ONE / ANORMI ) / AINVNM
 | |
|                            END IF
 | |
|                         ELSE
 | |
| *
 | |
| *                          Do only the condition estimate if INFO.NE.0.
 | |
| *
 | |
|                            TRFCON = .TRUE.
 | |
|                            RCONDO = ZERO
 | |
|                            RCONDI = ZERO
 | |
|                         END IF
 | |
| *
 | |
| *                       Skip the solve tests if the matrix is singular.
 | |
| *
 | |
|                         IF( TRFCON )
 | |
|      $                     GO TO 90
 | |
| *
 | |
|                         DO 80 IRHS = 1, NNS
 | |
|                            NRHS = NSVAL( IRHS )
 | |
|                            XTYPE = 'N'
 | |
| *
 | |
|                            DO 70 ITRAN = 1, NTRAN
 | |
|                               TRANS = TRANSS( ITRAN )
 | |
|                               IF( ITRAN.EQ.1 ) THEN
 | |
|                                  RCONDC = RCONDO
 | |
|                                  NORM = 'O'
 | |
|                               ELSE
 | |
|                                  RCONDC = RCONDI
 | |
|                                  NORM = 'I'
 | |
|                               END IF
 | |
| *
 | |
| *+    TEST 2:
 | |
| *                             Solve and compute residual for A * X = B.
 | |
| *
 | |
|                               SRNAMT = 'DLARHS'
 | |
|                               CALL DLARHS( PATH, XTYPE, ' ', TRANS, N,
 | |
|      $                                     N, KL, KU, NRHS, A, LDA,
 | |
|      $                                     XACT, LDB, B, LDB, ISEED,
 | |
|      $                                     INFO )
 | |
|                               XTYPE = 'C'
 | |
|                               CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
 | |
|      $                                     LDB )
 | |
| *
 | |
|                               SRNAMT = 'DGBTRS'
 | |
|                               CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFAC,
 | |
|      $                                     LDAFAC, IWORK, X, LDB, INFO )
 | |
| *
 | |
| *                             Check error code from DGBTRS.
 | |
| *
 | |
|                               IF( INFO.NE.0 )
 | |
|      $                           CALL ALAERH( PATH, 'DGBTRS', INFO, 0,
 | |
|      $                                        TRANS, N, N, KL, KU, -1,
 | |
|      $                                        IMAT, NFAIL, NERRS, NOUT )
 | |
| *
 | |
|                               CALL DLACPY( 'Full', N, NRHS, B, LDB,
 | |
|      $                                     WORK, LDB )
 | |
|                               CALL DGBT02( TRANS, M, N, KL, KU, NRHS, A,
 | |
|      $                                     LDA, X, LDB, WORK, LDB,
 | |
|      $                                     RESULT( 2 ) )
 | |
| *
 | |
| *+    TEST 3:
 | |
| *                             Check solution from generated exact
 | |
| *                             solution.
 | |
| *
 | |
|                               CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
 | |
|      $                                     RCONDC, RESULT( 3 ) )
 | |
| *
 | |
| *+    TESTS 4, 5, 6:
 | |
| *                             Use iterative refinement to improve the
 | |
| *                             solution.
 | |
| *
 | |
|                               SRNAMT = 'DGBRFS'
 | |
|                               CALL DGBRFS( TRANS, N, KL, KU, NRHS, A,
 | |
|      $                                     LDA, AFAC, LDAFAC, IWORK, B,
 | |
|      $                                     LDB, X, LDB, RWORK,
 | |
|      $                                     RWORK( NRHS+1 ), WORK,
 | |
|      $                                     IWORK( N+1 ), INFO )
 | |
| *
 | |
| *                             Check error code from DGBRFS.
 | |
| *
 | |
|                               IF( INFO.NE.0 )
 | |
|      $                           CALL ALAERH( PATH, 'DGBRFS', INFO, 0,
 | |
|      $                                        TRANS, N, N, KL, KU, NRHS,
 | |
|      $                                        IMAT, NFAIL, NERRS, NOUT )
 | |
| *
 | |
|                               CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
 | |
|      $                                     RCONDC, RESULT( 4 ) )
 | |
|                               CALL DGBT05( TRANS, N, KL, KU, NRHS, A,
 | |
|      $                                     LDA, B, LDB, X, LDB, XACT,
 | |
|      $                                     LDB, RWORK, RWORK( NRHS+1 ),
 | |
|      $                                     RESULT( 5 ) )
 | |
|                               DO 60 K = 2, 6
 | |
|                                  IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                                 CALL ALAHD( NOUT, PATH )
 | |
|                                     WRITE( NOUT, FMT = 9996 )TRANS, N,
 | |
|      $                                 KL, KU, NRHS, IMAT, K,
 | |
|      $                                 RESULT( K )
 | |
|                                     NFAIL = NFAIL + 1
 | |
|                                  END IF
 | |
|    60                         CONTINUE
 | |
|                               NRUN = NRUN + 5
 | |
|    70                      CONTINUE
 | |
|    80                   CONTINUE
 | |
| *
 | |
| *+    TEST 7:
 | |
| *                          Get an estimate of RCOND = 1/CNDNUM.
 | |
| *
 | |
|    90                   CONTINUE
 | |
|                         DO 100 ITRAN = 1, 2
 | |
|                            IF( ITRAN.EQ.1 ) THEN
 | |
|                               ANORM = ANORMO
 | |
|                               RCONDC = RCONDO
 | |
|                               NORM = 'O'
 | |
|                            ELSE
 | |
|                               ANORM = ANORMI
 | |
|                               RCONDC = RCONDI
 | |
|                               NORM = 'I'
 | |
|                            END IF
 | |
|                            SRNAMT = 'DGBCON'
 | |
|                            CALL DGBCON( NORM, N, KL, KU, AFAC, LDAFAC,
 | |
|      $                                  IWORK, ANORM, RCOND, WORK,
 | |
|      $                                  IWORK( N+1 ), INFO )
 | |
| *
 | |
| *                             Check error code from DGBCON.
 | |
| *
 | |
|                            IF( INFO.NE.0 )
 | |
|      $                        CALL ALAERH( PATH, 'DGBCON', INFO, 0,
 | |
|      $                                     NORM, N, N, KL, KU, -1, IMAT,
 | |
|      $                                     NFAIL, NERRS, NOUT )
 | |
| *
 | |
|                            RESULT( 7 ) = DGET06( RCOND, RCONDC )
 | |
| *
 | |
| *                          Print information about the tests that did
 | |
| *                          not pass the threshold.
 | |
| *
 | |
|                            IF( RESULT( 7 ).GE.THRESH ) THEN
 | |
|                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                           CALL ALAHD( NOUT, PATH )
 | |
|                               WRITE( NOUT, FMT = 9995 )NORM, N, KL, KU,
 | |
|      $                           IMAT, 7, RESULT( 7 )
 | |
|                               NFAIL = NFAIL + 1
 | |
|                            END IF
 | |
|                            NRUN = NRUN + 1
 | |
|   100                   CONTINUE
 | |
| *
 | |
|   110                CONTINUE
 | |
|   120             CONTINUE
 | |
|   130          CONTINUE
 | |
|   140       CONTINUE
 | |
|   150    CONTINUE
 | |
|   160 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
|  9999 FORMAT( ' *** In DCHKGB, LA=', I5, ' is too small for M=', I5,
 | |
|      $      ', N=', I5, ', KL=', I4, ', KU=', I4,
 | |
|      $      / ' ==> Increase LA to at least ', I5 )
 | |
|  9998 FORMAT( ' *** In DCHKGB, LAFAC=', I5, ' is too small for M=', I5,
 | |
|      $      ', N=', I5, ', KL=', I4, ', KU=', I4,
 | |
|      $      / ' ==> Increase LAFAC to at least ', I5 )
 | |
|  9997 FORMAT( ' M =', I5, ', N =', I5, ', KL=', I5, ', KU=', I5,
 | |
|      $      ', NB =', I4, ', type ', I1, ', test(', I1, ')=', G12.5 )
 | |
|  9996 FORMAT( ' TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
 | |
|      $      ', NRHS=', I3, ', type ', I1, ', test(', I1, ')=', G12.5 )
 | |
|  9995 FORMAT( ' NORM =''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
 | |
|      $      ',', 10X, ' type ', I1, ', test(', I1, ')=', G12.5 )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DCHKGB
 | |
| *
 | |
|       END
 |