826 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			826 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLATTP
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK,
 | |
| *                          RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, TRANS, UPLO
 | |
| *       INTEGER            IMAT, INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISEED( 4 )
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            AP( * ), B( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLATTP generates a triangular test matrix in packed storage.
 | |
| *> IMAT and UPLO uniquely specify the properties of the test matrix,
 | |
| *> which is returned in the array AP.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IMAT
 | |
| *> \verbatim
 | |
| *>          IMAT is INTEGER
 | |
| *>          An integer key describing which matrix to generate for this
 | |
| *>          path.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A will be upper or lower
 | |
| *>          triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies whether the matrix or its transpose will be used.
 | |
| *>          = 'N':  No transpose
 | |
| *>          = 'T':  Transpose
 | |
| *>          = 'C':  Conjugate transpose
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ISEED
 | |
| *> \verbatim
 | |
| *>          ISEED is INTEGER array, dimension (4)
 | |
| *>          The seed vector for the random number generator (used in
 | |
| *>          CLATMS).  Modified on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix to be generated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          The upper or lower triangular matrix A, packed columnwise in
 | |
| *>          a linear array.  The j-th column of A is stored in the array
 | |
| *>          AP as follows:
 | |
| *>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L',
 | |
| *>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (N)
 | |
| *>          The right hand side vector, if IMAT > 10.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK,
 | |
|      $                   RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, TRANS, UPLO
 | |
|       INTEGER            IMAT, INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISEED( 4 )
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            AP( * ), B( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, TWO, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       CHARACTER          DIST, PACKIT, TYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IY, J, JC, JCNEXT, JCOUNT, JJ, JL, JR, JX,
 | |
|      $                   KL, KU, MODE
 | |
|       REAL               ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, REXP,
 | |
|      $                   SFAC, SMLNUM, T, TEXP, TLEFT, TSCAL, ULP, UNFL,
 | |
|      $                   X, Y, Z
 | |
|       COMPLEX            CTEMP, PLUS1, PLUS2, RA, RB, S, STAR1
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SLAMCH
 | |
|       COMPLEX            CLARND
 | |
|       EXTERNAL           LSAME, ICAMAX, SLAMCH, CLARND
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLARNV, CLATB4, CLATMS, CROT, CROTG, CSSCAL,
 | |
|      $                   SLABAD, SLARNV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CMPLX, CONJG, MAX, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Complex precision'
 | |
|       PATH( 2: 3 ) = 'TP'
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | |
|       SMLNUM = UNFL
 | |
|       BIGNUM = ( ONE-ULP ) / SMLNUM
 | |
|       CALL SLABAD( SMLNUM, BIGNUM )
 | |
|       IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
 | |
|          DIAG = 'U'
 | |
|       ELSE
 | |
|          DIAG = 'N'
 | |
|       END IF
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if N.LE.0.
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Call CLATB4 to set parameters for CLATMS.
 | |
| *
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( UPPER ) THEN
 | |
|          CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | |
|      $                CNDNUM, DIST )
 | |
|          PACKIT = 'C'
 | |
|       ELSE
 | |
|          CALL CLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | |
|      $                CNDNUM, DIST )
 | |
|          PACKIT = 'R'
 | |
|       END IF
 | |
| *
 | |
| *     IMAT <= 6:  Non-unit triangular matrix
 | |
| *
 | |
|       IF( IMAT.LE.6 ) THEN
 | |
|          CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
 | |
|      $                ANORM, KL, KU, PACKIT, AP, N, WORK, INFO )
 | |
| *
 | |
| *     IMAT > 6:  Unit triangular matrix
 | |
| *     The diagonal is deliberately set to something other than 1.
 | |
| *
 | |
| *     IMAT = 7:  Matrix is the identity
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.7 ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 20 J = 1, N
 | |
|                DO 10 I = 1, J - 1
 | |
|                   AP( JC+I-1 ) = ZERO
 | |
|    10          CONTINUE
 | |
|                AP( JC+J-1 ) = J
 | |
|                JC = JC + J
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 40 J = 1, N
 | |
|                AP( JC ) = J
 | |
|                DO 30 I = J + 1, N
 | |
|                   AP( JC+I-J ) = ZERO
 | |
|    30          CONTINUE
 | |
|                JC = JC + N - J + 1
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *     IMAT > 7:  Non-trivial unit triangular matrix
 | |
| *
 | |
| *     Generate a unit triangular matrix T with condition CNDNUM by
 | |
| *     forming a triangular matrix with known singular values and
 | |
| *     filling in the zero entries with Givens rotations.
 | |
| *
 | |
|       ELSE IF( IMAT.LE.10 ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 0
 | |
|             DO 60 J = 1, N
 | |
|                DO 50 I = 1, J - 1
 | |
|                   AP( JC+I ) = ZERO
 | |
|    50          CONTINUE
 | |
|                AP( JC+J ) = J
 | |
|                JC = JC + J
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 80 J = 1, N
 | |
|                AP( JC ) = J
 | |
|                DO 70 I = J + 1, N
 | |
|                   AP( JC+I-J ) = ZERO
 | |
|    70          CONTINUE
 | |
|                JC = JC + N - J + 1
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Since the trace of a unit triangular matrix is 1, the product
 | |
| *        of its singular values must be 1.  Let s = sqrt(CNDNUM),
 | |
| *        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
 | |
| *        The following triangular matrix has singular values s, 1, 1,
 | |
| *        ..., 1, 1/s:
 | |
| *
 | |
| *        1  y  y  y  ...  y  y  z
 | |
| *           1  0  0  ...  0  0  y
 | |
| *              1  0  ...  0  0  y
 | |
| *                 .  ...  .  .  .
 | |
| *                     .   .  .  .
 | |
| *                         1  0  y
 | |
| *                            1  y
 | |
| *                               1
 | |
| *
 | |
| *        To fill in the zeros, we first multiply by a matrix with small
 | |
| *        condition number of the form
 | |
| *
 | |
| *        1  0  0  0  0  ...
 | |
| *           1  +  *  0  0  ...
 | |
| *              1  +  0  0  0
 | |
| *                 1  +  *  0  0
 | |
| *                    1  +  0  0
 | |
| *                       ...
 | |
| *                          1  +  0
 | |
| *                             1  0
 | |
| *                                1
 | |
| *
 | |
| *        Each element marked with a '*' is formed by taking the product
 | |
| *        of the adjacent elements marked with '+'.  The '*'s can be
 | |
| *        chosen freely, and the '+'s are chosen so that the inverse of
 | |
| *        T will have elements of the same magnitude as T.  If the *'s in
 | |
| *        both T and inv(T) have small magnitude, T is well conditioned.
 | |
| *        The two offdiagonals of T are stored in WORK.
 | |
| *
 | |
| *        The product of these two matrices has the form
 | |
| *
 | |
| *        1  y  y  y  y  y  .  y  y  z
 | |
| *           1  +  *  0  0  .  0  0  y
 | |
| *              1  +  0  0  .  0  0  y
 | |
| *                 1  +  *  .  .  .  .
 | |
| *                    1  +  .  .  .  .
 | |
| *                       .  .  .  .  .
 | |
| *                          .  .  .  .
 | |
| *                             1  +  y
 | |
| *                                1  y
 | |
| *                                   1
 | |
| *
 | |
| *        Now we multiply by Givens rotations, using the fact that
 | |
| *
 | |
| *              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ]
 | |
| *              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ]
 | |
| *        and
 | |
| *              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ]
 | |
| *              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ]
 | |
| *
 | |
| *        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
 | |
| *
 | |
|          STAR1 = 0.25*CLARND( 5, ISEED )
 | |
|          SFAC = 0.5
 | |
|          PLUS1 = SFAC*CLARND( 5, ISEED )
 | |
|          DO 90 J = 1, N, 2
 | |
|             PLUS2 = STAR1 / PLUS1
 | |
|             WORK( J ) = PLUS1
 | |
|             WORK( N+J ) = STAR1
 | |
|             IF( J+1.LE.N ) THEN
 | |
|                WORK( J+1 ) = PLUS2
 | |
|                WORK( N+J+1 ) = ZERO
 | |
|                PLUS1 = STAR1 / PLUS2
 | |
|                REXP = CLARND( 2, ISEED )
 | |
|                IF( REXP.LT.ZERO ) THEN
 | |
|                   STAR1 = -SFAC**( ONE-REXP )*CLARND( 5, ISEED )
 | |
|                ELSE
 | |
|                   STAR1 = SFAC**( ONE+REXP )*CLARND( 5, ISEED )
 | |
|                END IF
 | |
|             END IF
 | |
|    90    CONTINUE
 | |
| *
 | |
|          X = SQRT( CNDNUM ) - ONE / SQRT( CNDNUM )
 | |
|          IF( N.GT.2 ) THEN
 | |
|             Y = SQRT( TWO / REAL( N-2 ) )*X
 | |
|          ELSE
 | |
|             Y = ZERO
 | |
|          END IF
 | |
|          Z = X*X
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Set the upper triangle of A with a unit triangular matrix
 | |
| *           of known condition number.
 | |
| *
 | |
|             JC = 1
 | |
|             DO 100 J = 2, N
 | |
|                AP( JC+1 ) = Y
 | |
|                IF( J.GT.2 )
 | |
|      $            AP( JC+J-1 ) = WORK( J-2 )
 | |
|                IF( J.GT.3 )
 | |
|      $            AP( JC+J-2 ) = WORK( N+J-3 )
 | |
|                JC = JC + J
 | |
|   100       CONTINUE
 | |
|             JC = JC - N
 | |
|             AP( JC+1 ) = Z
 | |
|             DO 110 J = 2, N - 1
 | |
|                AP( JC+J ) = Y
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Set the lower triangle of A with a unit triangular matrix
 | |
| *           of known condition number.
 | |
| *
 | |
|             DO 120 I = 2, N - 1
 | |
|                AP( I ) = Y
 | |
|   120       CONTINUE
 | |
|             AP( N ) = Z
 | |
|             JC = N + 1
 | |
|             DO 130 J = 2, N - 1
 | |
|                AP( JC+1 ) = WORK( J-1 )
 | |
|                IF( J.LT.N-1 )
 | |
|      $            AP( JC+2 ) = WORK( N+J-1 )
 | |
|                AP( JC+N-J ) = Y
 | |
|                JC = JC + N - J + 1
 | |
|   130       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Fill in the zeros using Givens rotations
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 150 J = 1, N - 1
 | |
|                JCNEXT = JC + J
 | |
|                RA = AP( JCNEXT+J-1 )
 | |
|                RB = TWO
 | |
|                CALL CROTG( RA, RB, C, S )
 | |
| *
 | |
| *              Multiply by [ c  s; -conjg(s)  c] on the left.
 | |
| *
 | |
|                IF( N.GT.J+1 ) THEN
 | |
|                   JX = JCNEXT + J
 | |
|                   DO 140 I = J + 2, N
 | |
|                      CTEMP = C*AP( JX+J ) + S*AP( JX+J+1 )
 | |
|                      AP( JX+J+1 ) = -CONJG( S )*AP( JX+J ) +
 | |
|      $                              C*AP( JX+J+1 )
 | |
|                      AP( JX+J ) = CTEMP
 | |
|                      JX = JX + I
 | |
|   140             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Multiply by [-c -s;  conjg(s) -c] on the right.
 | |
| *
 | |
|                IF( J.GT.1 )
 | |
|      $            CALL CROT( J-1, AP( JCNEXT ), 1, AP( JC ), 1, -C, -S )
 | |
| *
 | |
| *              Negate A(J,J+1).
 | |
| *
 | |
|                AP( JCNEXT+J-1 ) = -AP( JCNEXT+J-1 )
 | |
|                JC = JCNEXT
 | |
|   150       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 170 J = 1, N - 1
 | |
|                JCNEXT = JC + N - J + 1
 | |
|                RA = AP( JC+1 )
 | |
|                RB = TWO
 | |
|                CALL CROTG( RA, RB, C, S )
 | |
|                S = CONJG( S )
 | |
| *
 | |
| *              Multiply by [ c -s;  conjg(s) c] on the right.
 | |
| *
 | |
|                IF( N.GT.J+1 )
 | |
|      $            CALL CROT( N-J-1, AP( JCNEXT+1 ), 1, AP( JC+2 ), 1, C,
 | |
|      $                       -S )
 | |
| *
 | |
| *              Multiply by [-c  s; -conjg(s) -c] on the left.
 | |
| *
 | |
|                IF( J.GT.1 ) THEN
 | |
|                   JX = 1
 | |
|                   DO 160 I = 1, J - 1
 | |
|                      CTEMP = -C*AP( JX+J-I ) + S*AP( JX+J-I+1 )
 | |
|                      AP( JX+J-I+1 ) = -CONJG( S )*AP( JX+J-I ) -
 | |
|      $                                C*AP( JX+J-I+1 )
 | |
|                      AP( JX+J-I ) = CTEMP
 | |
|                      JX = JX + N - I + 1
 | |
|   160             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Negate A(J+1,J).
 | |
| *
 | |
|                AP( JC+1 ) = -AP( JC+1 )
 | |
|                JC = JCNEXT
 | |
|   170       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *     IMAT > 10:  Pathological test cases.  These triangular matrices
 | |
| *     are badly scaled or badly conditioned, so when used in solving a
 | |
| *     triangular system they may cause overflow in the solution vector.
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.11 ) THEN
 | |
| *
 | |
| *        Type 11:  Generate a triangular matrix with elements between
 | |
| *        -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
 | |
| *        Make the right hand side large so that it requires scaling.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 180 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
 | |
|                AP( JC+J-1 ) = CLARND( 5, ISEED )*TWO
 | |
|                JC = JC + J
 | |
|   180       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 190 J = 1, N
 | |
|                IF( J.LT.N )
 | |
|      $            CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
 | |
|                AP( JC ) = CLARND( 5, ISEED )*TWO
 | |
|                JC = JC + N - J + 1
 | |
|   190       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Set the right hand side so that the largest value is BIGNUM.
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          IY = ICAMAX( N, B, 1 )
 | |
|          BNORM = ABS( B( IY ) )
 | |
|          BSCAL = BIGNUM / MAX( ONE, BNORM )
 | |
|          CALL CSSCAL( N, BSCAL, B, 1 )
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.12 ) THEN
 | |
| *
 | |
| *        Type 12:  Make the first diagonal element in the solve small to
 | |
| *        cause immediate overflow when dividing by T(j,j).
 | |
| *        In type 12, the offdiagonal elements are small (CNORM(j) < 1).
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          TSCAL = ONE / MAX( ONE, REAL( N-1 ) )
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 200 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
 | |
|                CALL CSSCAL( J-1, TSCAL, AP( JC ), 1 )
 | |
|                AP( JC+J-1 ) = CLARND( 5, ISEED )
 | |
|                JC = JC + J
 | |
|   200       CONTINUE
 | |
|             AP( N*( N+1 ) / 2 ) = SMLNUM*AP( N*( N+1 ) / 2 )
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 210 J = 1, N
 | |
|                CALL CLARNV( 2, ISEED, N-J, AP( JC+1 ) )
 | |
|                CALL CSSCAL( N-J, TSCAL, AP( JC+1 ), 1 )
 | |
|                AP( JC ) = CLARND( 5, ISEED )
 | |
|                JC = JC + N - J + 1
 | |
|   210       CONTINUE
 | |
|             AP( 1 ) = SMLNUM*AP( 1 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.13 ) THEN
 | |
| *
 | |
| *        Type 13:  Make the first diagonal element in the solve small to
 | |
| *        cause immediate overflow when dividing by T(j,j).
 | |
| *        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 220 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
 | |
|                AP( JC+J-1 ) = CLARND( 5, ISEED )
 | |
|                JC = JC + J
 | |
|   220       CONTINUE
 | |
|             AP( N*( N+1 ) / 2 ) = SMLNUM*AP( N*( N+1 ) / 2 )
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 230 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
 | |
|                AP( JC ) = CLARND( 5, ISEED )
 | |
|                JC = JC + N - J + 1
 | |
|   230       CONTINUE
 | |
|             AP( 1 ) = SMLNUM*AP( 1 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.14 ) THEN
 | |
| *
 | |
| *        Type 14:  T is diagonal with small numbers on the diagonal to
 | |
| *        make the growth factor underflow, but a small right hand side
 | |
| *        chosen so that the solution does not overflow.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JCOUNT = 1
 | |
|             JC = ( N-1 )*N / 2 + 1
 | |
|             DO 250 J = N, 1, -1
 | |
|                DO 240 I = 1, J - 1
 | |
|                   AP( JC+I-1 ) = ZERO
 | |
|   240          CONTINUE
 | |
|                IF( JCOUNT.LE.2 ) THEN
 | |
|                   AP( JC+J-1 ) = SMLNUM*CLARND( 5, ISEED )
 | |
|                ELSE
 | |
|                   AP( JC+J-1 ) = CLARND( 5, ISEED )
 | |
|                END IF
 | |
|                JCOUNT = JCOUNT + 1
 | |
|                IF( JCOUNT.GT.4 )
 | |
|      $            JCOUNT = 1
 | |
|                JC = JC - J + 1
 | |
|   250       CONTINUE
 | |
|          ELSE
 | |
|             JCOUNT = 1
 | |
|             JC = 1
 | |
|             DO 270 J = 1, N
 | |
|                DO 260 I = J + 1, N
 | |
|                   AP( JC+I-J ) = ZERO
 | |
|   260          CONTINUE
 | |
|                IF( JCOUNT.LE.2 ) THEN
 | |
|                   AP( JC ) = SMLNUM*CLARND( 5, ISEED )
 | |
|                ELSE
 | |
|                   AP( JC ) = CLARND( 5, ISEED )
 | |
|                END IF
 | |
|                JCOUNT = JCOUNT + 1
 | |
|                IF( JCOUNT.GT.4 )
 | |
|      $            JCOUNT = 1
 | |
|                JC = JC + N - J + 1
 | |
|   270       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Set the right hand side alternately zero and small.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             B( 1 ) = ZERO
 | |
|             DO 280 I = N, 2, -2
 | |
|                B( I ) = ZERO
 | |
|                B( I-1 ) = SMLNUM*CLARND( 5, ISEED )
 | |
|   280       CONTINUE
 | |
|          ELSE
 | |
|             B( N ) = ZERO
 | |
|             DO 290 I = 1, N - 1, 2
 | |
|                B( I ) = ZERO
 | |
|                B( I+1 ) = SMLNUM*CLARND( 5, ISEED )
 | |
|   290       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.15 ) THEN
 | |
| *
 | |
| *        Type 15:  Make the diagonal elements small to cause gradual
 | |
| *        overflow when dividing by T(j,j).  To control the amount of
 | |
| *        scaling needed, the matrix is bidiagonal.
 | |
| *
 | |
|          TEXP = ONE / MAX( ONE, REAL( N-1 ) )
 | |
|          TSCAL = SMLNUM**TEXP
 | |
|          CALL CLARNV( 4, ISEED, N, B )
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 310 J = 1, N
 | |
|                DO 300 I = 1, J - 2
 | |
|                   AP( JC+I-1 ) = ZERO
 | |
|   300          CONTINUE
 | |
|                IF( J.GT.1 )
 | |
|      $            AP( JC+J-2 ) = CMPLX( -ONE, -ONE )
 | |
|                AP( JC+J-1 ) = TSCAL*CLARND( 5, ISEED )
 | |
|                JC = JC + J
 | |
|   310       CONTINUE
 | |
|             B( N ) = CMPLX( ONE, ONE )
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 330 J = 1, N
 | |
|                DO 320 I = J + 2, N
 | |
|                   AP( JC+I-J ) = ZERO
 | |
|   320          CONTINUE
 | |
|                IF( J.LT.N )
 | |
|      $            AP( JC+1 ) = CMPLX( -ONE, -ONE )
 | |
|                AP( JC ) = TSCAL*CLARND( 5, ISEED )
 | |
|                JC = JC + N - J + 1
 | |
|   330       CONTINUE
 | |
|             B( 1 ) = CMPLX( ONE, ONE )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.16 ) THEN
 | |
| *
 | |
| *        Type 16:  One zero diagonal element.
 | |
| *
 | |
|          IY = N / 2 + 1
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 340 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, J, AP( JC ) )
 | |
|                IF( J.NE.IY ) THEN
 | |
|                   AP( JC+J-1 ) = CLARND( 5, ISEED )*TWO
 | |
|                ELSE
 | |
|                   AP( JC+J-1 ) = ZERO
 | |
|                END IF
 | |
|                JC = JC + J
 | |
|   340       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 350 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, N-J+1, AP( JC ) )
 | |
|                IF( J.NE.IY ) THEN
 | |
|                   AP( JC ) = CLARND( 5, ISEED )*TWO
 | |
|                ELSE
 | |
|                   AP( JC ) = ZERO
 | |
|                END IF
 | |
|                JC = JC + N - J + 1
 | |
|   350       CONTINUE
 | |
|          END IF
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          CALL CSSCAL( N, TWO, B, 1 )
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.17 ) THEN
 | |
| *
 | |
| *        Type 17:  Make the offdiagonal elements large to cause overflow
 | |
| *        when adding a column of T.  In the non-transposed case, the
 | |
| *        matrix is constructed to cause overflow when adding a column in
 | |
| *        every other step.
 | |
| *
 | |
|          TSCAL = UNFL / ULP
 | |
|          TSCAL = ( ONE-ULP ) / TSCAL
 | |
|          DO 360 J = 1, N*( N+1 ) / 2
 | |
|             AP( J ) = ZERO
 | |
|   360    CONTINUE
 | |
|          TEXP = ONE
 | |
|          IF( UPPER ) THEN
 | |
|             JC = ( N-1 )*N / 2 + 1
 | |
|             DO 370 J = N, 2, -2
 | |
|                AP( JC ) = -TSCAL / REAL( N+1 )
 | |
|                AP( JC+J-1 ) = ONE
 | |
|                B( J ) = TEXP*( ONE-ULP )
 | |
|                JC = JC - J + 1
 | |
|                AP( JC ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
 | |
|                AP( JC+J-2 ) = ONE
 | |
|                B( J-1 ) = TEXP*REAL( N*N+N-1 )
 | |
|                TEXP = TEXP*TWO
 | |
|                JC = JC - J + 2
 | |
|   370       CONTINUE
 | |
|             B( 1 ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 380 J = 1, N - 1, 2
 | |
|                AP( JC+N-J ) = -TSCAL / REAL( N+1 )
 | |
|                AP( JC ) = ONE
 | |
|                B( J ) = TEXP*( ONE-ULP )
 | |
|                JC = JC + N - J + 1
 | |
|                AP( JC+N-J-1 ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
 | |
|                AP( JC ) = ONE
 | |
|                B( J+1 ) = TEXP*REAL( N*N+N-1 )
 | |
|                TEXP = TEXP*TWO
 | |
|                JC = JC + N - J
 | |
|   380       CONTINUE
 | |
|             B( N ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.18 ) THEN
 | |
| *
 | |
| *        Type 18:  Generate a unit triangular matrix with elements
 | |
| *        between -1 and 1, and make the right hand side large so that it
 | |
| *        requires scaling.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 390 J = 1, N
 | |
|                CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
 | |
|                AP( JC+J-1 ) = ZERO
 | |
|                JC = JC + J
 | |
|   390       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 400 J = 1, N
 | |
|                IF( J.LT.N )
 | |
|      $            CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
 | |
|                AP( JC ) = ZERO
 | |
|                JC = JC + N - J + 1
 | |
|   400       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Set the right hand side so that the largest value is BIGNUM.
 | |
| *
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          IY = ICAMAX( N, B, 1 )
 | |
|          BNORM = ABS( B( IY ) )
 | |
|          BSCAL = BIGNUM / MAX( ONE, BNORM )
 | |
|          CALL CSSCAL( N, BSCAL, B, 1 )
 | |
| *
 | |
|       ELSE IF( IMAT.EQ.19 ) THEN
 | |
| *
 | |
| *        Type 19:  Generate a triangular matrix with elements between
 | |
| *        BIGNUM/(n-1) and BIGNUM so that at least one of the column
 | |
| *        norms will exceed BIGNUM.
 | |
| *        1/3/91:  CLATPS no longer can handle this case
 | |
| *
 | |
|          TLEFT = BIGNUM / MAX( ONE, REAL( N-1 ) )
 | |
|          TSCAL = BIGNUM*( REAL( N-1 ) / MAX( ONE, REAL( N ) ) )
 | |
|          IF( UPPER ) THEN
 | |
|             JC = 1
 | |
|             DO 420 J = 1, N
 | |
|                CALL CLARNV( 5, ISEED, J, AP( JC ) )
 | |
|                CALL SLARNV( 1, ISEED, J, RWORK )
 | |
|                DO 410 I = 1, J
 | |
|                   AP( JC+I-1 ) = AP( JC+I-1 )*( TLEFT+RWORK( I )*TSCAL )
 | |
|   410          CONTINUE
 | |
|                JC = JC + J
 | |
|   420       CONTINUE
 | |
|          ELSE
 | |
|             JC = 1
 | |
|             DO 440 J = 1, N
 | |
|                CALL CLARNV( 5, ISEED, N-J+1, AP( JC ) )
 | |
|                CALL SLARNV( 1, ISEED, N-J+1, RWORK )
 | |
|                DO 430 I = J, N
 | |
|                   AP( JC+I-J ) = AP( JC+I-J )*
 | |
|      $                           ( TLEFT+RWORK( I-J+1 )*TSCAL )
 | |
|   430          CONTINUE
 | |
|                JC = JC + N - J + 1
 | |
|   440       CONTINUE
 | |
|          END IF
 | |
|          CALL CLARNV( 2, ISEED, N, B )
 | |
|          CALL CSSCAL( N, TWO, B, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Flip the matrix across its counter-diagonal if the transpose will
 | |
| *     be used.
 | |
| *
 | |
|       IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             JJ = 1
 | |
|             JR = N*( N+1 ) / 2
 | |
|             DO 460 J = 1, N / 2
 | |
|                JL = JJ
 | |
|                DO 450 I = J, N - J
 | |
|                   T = AP( JR-I+J )
 | |
|                   AP( JR-I+J ) = AP( JL )
 | |
|                   AP( JL ) = T
 | |
|                   JL = JL + I
 | |
|   450          CONTINUE
 | |
|                JJ = JJ + J + 1
 | |
|                JR = JR - ( N-J+1 )
 | |
|   460       CONTINUE
 | |
|          ELSE
 | |
|             JL = 1
 | |
|             JJ = N*( N+1 ) / 2
 | |
|             DO 480 J = 1, N / 2
 | |
|                JR = JJ
 | |
|                DO 470 I = J, N - J
 | |
|                   T = AP( JL+I-J )
 | |
|                   AP( JL+I-J ) = AP( JR )
 | |
|                   AP( JR ) = T
 | |
|                   JR = JR - I
 | |
|   470          CONTINUE
 | |
|                JL = JL + N - J + 1
 | |
|                JJ = JJ - J - 1
 | |
|   480       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLATTP
 | |
| *
 | |
|       END
 |