192 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGET03
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
 | |
| *                          RCOND, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDAINV, LDWORK, N
 | |
| *       REAL               RCOND, RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGET03 computes the residual for a general matrix times its inverse:
 | |
| *>    norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The original N x N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AINV
 | |
| *> \verbatim
 | |
| *>          AINV is COMPLEX array, dimension (LDAINV,N)
 | |
| *>          The inverse of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAINV
 | |
| *> \verbatim
 | |
| *>          LDAINV is INTEGER
 | |
| *>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (LDWORK,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          The reciprocal of the condition number of A, computed as
 | |
| *>          ( 1/norm(A) ) / norm(AINV).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
 | |
|      $                   RCOND, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDAINV, LDWORK, N
 | |
|       REAL               RCOND, RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       REAL               AINVNM, ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       EXTERNAL           CLANGE, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
 | |
|       AINVNM = CLANGE( '1', N, N, AINV, LDAINV, RWORK )
 | |
|       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|          RCOND = ZERO
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
|       RCOND = ( ONE/ANORM ) / AINVNM
 | |
| *
 | |
| *     Compute I - A * AINV
 | |
| *
 | |
|       CALL CGEMM( 'No transpose', 'No transpose', N, N, N, -CONE,
 | |
|      $            AINV, LDAINV, A, LDA, CZERO, WORK, LDWORK )
 | |
|       DO 10 I = 1, N
 | |
|          WORK( I, I ) = CONE + WORK( I, I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
 | |
| *
 | |
|       RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
 | |
| *
 | |
|       RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGET03
 | |
| *
 | |
|       END
 |