221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGET01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | |
| *                          RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDAFAC, M, N
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGET01 reconstructs a matrix A from its L*U factorization and
 | |
| *> computes the residual
 | |
| *>    norm(L*U - A) / ( N * norm(A) * EPS ),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The original M x N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX array, dimension (LDAFAC,N)
 | |
| *>          The factored form of the matrix A.  AFAC contains the factors
 | |
| *>          L and U from the L*U factorization as computed by CGETRF.
 | |
| *>          Overwritten with the reconstructed matrix, and then with the
 | |
| *>          difference L*U - A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from CGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          norm(L*U - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complex_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
 | |
|      $                   RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDAFAC, M, N
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       REAL               ANORM, EPS
 | |
|       COMPLEX            T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               CLANGE, SLAMCH
 | |
|       COMPLEX            CDOTU
 | |
|       EXTERNAL           CLANGE, SLAMCH, CDOTU
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMV, CLASWP, CSCAL, CTRMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if M = 0 or N = 0.
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Compute the product L*U and overwrite AFAC with the result.
 | |
| *     A column at a time of the product is obtained, starting with
 | |
| *     column N.
 | |
| *
 | |
|       DO 10 K = N, 1, -1
 | |
|          IF( K.GT.M ) THEN
 | |
|             CALL CTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
 | |
|      $                  LDAFAC, AFAC( 1, K ), 1 )
 | |
|          ELSE
 | |
| *
 | |
| *           Compute elements (K+1:M,K)
 | |
| *
 | |
|             T = AFAC( K, K )
 | |
|             IF( K+1.LE.M ) THEN
 | |
|                CALL CSCAL( M-K, T, AFAC( K+1, K ), 1 )
 | |
|                CALL CGEMV( 'No transpose', M-K, K-1, CONE,
 | |
|      $                     AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1,
 | |
|      $                     CONE, AFAC( K+1, K ), 1 )
 | |
|             END IF
 | |
| *
 | |
| *           Compute the (K,K) element
 | |
| *
 | |
|             AFAC( K, K ) = T + CDOTU( K-1, AFAC( K, 1 ), LDAFAC,
 | |
|      $                     AFAC( 1, K ), 1 )
 | |
| *
 | |
| *           Compute elements (1:K-1,K)
 | |
| *
 | |
|             CALL CTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
 | |
|      $                  LDAFAC, AFAC( 1, K ), 1 )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       CALL CLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
 | |
| *
 | |
| *     Compute the difference  L*U - A  and store in AFAC.
 | |
| *
 | |
|       DO 30 J = 1, N
 | |
|          DO 20 I = 1, M
 | |
|             AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = CLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGET01
 | |
| *
 | |
|       END
 |