355 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLAEIN + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaein.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaein.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaein.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
 | |
| *                          EPS3, SMLNUM, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            NOINIT, RIGHTV
 | |
| *       INTEGER            INFO, LDB, LDH, N
 | |
| *       DOUBLE PRECISION   EPS3, SMLNUM
 | |
| *       COMPLEX*16         W
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLAEIN uses inverse iteration to find a right or left eigenvector
 | |
| *> corresponding to the eigenvalue W of a complex upper Hessenberg
 | |
| *> matrix H.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] RIGHTV
 | |
| *> \verbatim
 | |
| *>          RIGHTV is LOGICAL
 | |
| *>          = .TRUE. : compute right eigenvector;
 | |
| *>          = .FALSE.: compute left eigenvector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOINIT
 | |
| *> \verbatim
 | |
| *>          NOINIT is LOGICAL
 | |
| *>          = .TRUE. : no initial vector supplied in V
 | |
| *>          = .FALSE.: initial vector supplied in V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix H.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] H
 | |
| *> \verbatim
 | |
| *>          H is COMPLEX*16 array, dimension (LDH,N)
 | |
| *>          The upper Hessenberg matrix H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>          The leading dimension of the array H.  LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX*16
 | |
| *>          The eigenvalue of H whose corresponding right or left
 | |
| *>          eigenvector is to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX*16 array, dimension (N)
 | |
| *>          On entry, if NOINIT = .FALSE., V must contain a starting
 | |
| *>          vector for inverse iteration; otherwise V need not be set.
 | |
| *>          On exit, V contains the computed eigenvector, normalized so
 | |
| *>          that the component of largest magnitude has magnitude 1; here
 | |
| *>          the magnitude of a complex number (x,y) is taken to be
 | |
| *>          |x| + |y|.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX*16 array, dimension (LDB,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] EPS3
 | |
| *> \verbatim
 | |
| *>          EPS3 is DOUBLE PRECISION
 | |
| *>          A small machine-dependent value which is used to perturb
 | |
| *>          close eigenvalues, and to replace zero pivots.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLNUM
 | |
| *> \verbatim
 | |
| *>          SMLNUM is DOUBLE PRECISION
 | |
| *>          A machine-dependent value close to the underflow threshold.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          = 1:  inverse iteration did not converge; V is set to the
 | |
| *>                last iterate.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
 | |
|      $                   EPS3, SMLNUM, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            NOINIT, RIGHTV
 | |
|       INTEGER            INFO, LDB, LDH, N
 | |
|       DOUBLE PRECISION   EPS3, SMLNUM
 | |
|       COMPLEX*16         W
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         B( LDB, * ), H( LDH, * ), V( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, TENTH
 | |
|       PARAMETER          ( ONE = 1.0D+0, TENTH = 1.0D-1 )
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          NORMIN, TRANS
 | |
|       INTEGER            I, IERR, ITS, J
 | |
|       DOUBLE PRECISION   GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
 | |
|       COMPLEX*16         CDUM, EI, EJ, TEMP, X
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IZAMAX
 | |
|       DOUBLE PRECISION   DZASUM, DZNRM2
 | |
|       COMPLEX*16         ZLADIV
 | |
|       EXTERNAL           IZAMAX, DZASUM, DZNRM2, ZLADIV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZDSCAL, ZLATRS
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     GROWTO is the threshold used in the acceptance test for an
 | |
| *     eigenvector.
 | |
| *
 | |
|       ROOTN = SQRT( DBLE( N ) )
 | |
|       GROWTO = TENTH / ROOTN
 | |
|       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
 | |
| *
 | |
| *     Form B = H - W*I (except that the subdiagonal elements are not
 | |
| *     stored).
 | |
| *
 | |
|       DO 20 J = 1, N
 | |
|          DO 10 I = 1, J - 1
 | |
|             B( I, J ) = H( I, J )
 | |
|    10    CONTINUE
 | |
|          B( J, J ) = H( J, J ) - W
 | |
|    20 CONTINUE
 | |
| *
 | |
|       IF( NOINIT ) THEN
 | |
| *
 | |
| *        Initialize V.
 | |
| *
 | |
|          DO 30 I = 1, N
 | |
|             V( I ) = EPS3
 | |
|    30    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Scale supplied initial vector.
 | |
| *
 | |
|          VNORM = DZNRM2( N, V, 1 )
 | |
|          CALL ZDSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
 | |
|       END IF
 | |
| *
 | |
|       IF( RIGHTV ) THEN
 | |
| *
 | |
| *        LU decomposition with partial pivoting of B, replacing zero
 | |
| *        pivots by EPS3.
 | |
| *
 | |
|          DO 60 I = 1, N - 1
 | |
|             EI = H( I+1, I )
 | |
|             IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
 | |
| *
 | |
| *              Interchange rows and eliminate.
 | |
| *
 | |
|                X = ZLADIV( B( I, I ), EI )
 | |
|                B( I, I ) = EI
 | |
|                DO 40 J = I + 1, N
 | |
|                   TEMP = B( I+1, J )
 | |
|                   B( I+1, J ) = B( I, J ) - X*TEMP
 | |
|                   B( I, J ) = TEMP
 | |
|    40          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Eliminate without interchange.
 | |
| *
 | |
|                IF( B( I, I ).EQ.ZERO )
 | |
|      $            B( I, I ) = EPS3
 | |
|                X = ZLADIV( EI, B( I, I ) )
 | |
|                IF( X.NE.ZERO ) THEN
 | |
|                   DO 50 J = I + 1, N
 | |
|                      B( I+1, J ) = B( I+1, J ) - X*B( I, J )
 | |
|    50             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|    60    CONTINUE
 | |
|          IF( B( N, N ).EQ.ZERO )
 | |
|      $      B( N, N ) = EPS3
 | |
| *
 | |
|          TRANS = 'N'
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        UL decomposition with partial pivoting of B, replacing zero
 | |
| *        pivots by EPS3.
 | |
| *
 | |
|          DO 90 J = N, 2, -1
 | |
|             EJ = H( J, J-1 )
 | |
|             IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
 | |
| *
 | |
| *              Interchange columns and eliminate.
 | |
| *
 | |
|                X = ZLADIV( B( J, J ), EJ )
 | |
|                B( J, J ) = EJ
 | |
|                DO 70 I = 1, J - 1
 | |
|                   TEMP = B( I, J-1 )
 | |
|                   B( I, J-1 ) = B( I, J ) - X*TEMP
 | |
|                   B( I, J ) = TEMP
 | |
|    70          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Eliminate without interchange.
 | |
| *
 | |
|                IF( B( J, J ).EQ.ZERO )
 | |
|      $            B( J, J ) = EPS3
 | |
|                X = ZLADIV( EJ, B( J, J ) )
 | |
|                IF( X.NE.ZERO ) THEN
 | |
|                   DO 80 I = 1, J - 1
 | |
|                      B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
 | |
|    80             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|    90    CONTINUE
 | |
|          IF( B( 1, 1 ).EQ.ZERO )
 | |
|      $      B( 1, 1 ) = EPS3
 | |
| *
 | |
|          TRANS = 'C'
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       NORMIN = 'N'
 | |
|       DO 110 ITS = 1, N
 | |
| *
 | |
| *        Solve U*x = scale*v for a right eigenvector
 | |
| *          or U**H *x = scale*v for a left eigenvector,
 | |
| *        overwriting x on v.
 | |
| *
 | |
|          CALL ZLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
 | |
|      $                SCALE, RWORK, IERR )
 | |
|          NORMIN = 'Y'
 | |
| *
 | |
| *        Test for sufficient growth in the norm of v.
 | |
| *
 | |
|          VNORM = DZASUM( N, V, 1 )
 | |
|          IF( VNORM.GE.GROWTO*SCALE )
 | |
|      $      GO TO 120
 | |
| *
 | |
| *        Choose new orthogonal starting vector and try again.
 | |
| *
 | |
|          RTEMP = EPS3 / ( ROOTN+ONE )
 | |
|          V( 1 ) = EPS3
 | |
|          DO 100 I = 2, N
 | |
|             V( I ) = RTEMP
 | |
|   100    CONTINUE
 | |
|          V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
 | |
|   110 CONTINUE
 | |
| *
 | |
| *     Failure to find eigenvector in N iterations.
 | |
| *
 | |
|       INFO = 1
 | |
| *
 | |
|   120 CONTINUE
 | |
| *
 | |
| *     Normalize eigenvector.
 | |
| *
 | |
|       I = IZAMAX( N, V, 1 )
 | |
|       CALL ZDSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLAEIN
 | |
| *
 | |
|       END
 |