380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZHPEVD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 | |
| *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
| *       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
 | |
| *> a complex Hermitian matrix A in packed storage.  If eigenvectors are
 | |
| *> desired, it uses a divide and conquer algorithm.
 | |
| *>
 | |
| *> The divide and conquer algorithm makes very mild assumptions about
 | |
| *> floating point arithmetic. It will work on machines with a guard
 | |
| *> digit in add/subtract, or on those binary machines without guard
 | |
| *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | |
| *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, AP is overwritten by values generated during the
 | |
| *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 | |
| *>          and first superdiagonal of the tridiagonal matrix T overwrite
 | |
| *>          the corresponding elements of A, and if UPLO = 'L', the
 | |
| *>          diagonal and first subdiagonal of T overwrite the
 | |
| *>          corresponding elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX*16 array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 | |
| *>          eigenvectors of the matrix A, with the i-th column of Z
 | |
| *>          holding the eigenvector associated with W(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of array WORK.
 | |
| *>          If N <= 1,               LWORK must be at least 1.
 | |
| *>          If JOBZ = 'N' and N > 1, LWORK must be at least N.
 | |
| *>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the required sizes of the WORK, RWORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array,
 | |
| *>                                         dimension (LRWORK)
 | |
| *>          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LRWORK
 | |
| *> \verbatim
 | |
| *>          LRWORK is INTEGER
 | |
| *>          The dimension of array RWORK.
 | |
| *>          If N <= 1,               LRWORK must be at least 1.
 | |
| *>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
 | |
| *>          If JOBZ = 'V' and N > 1, LRWORK must be at least
 | |
| *>                    1 + 5*N + 2*N**2.
 | |
| *>
 | |
| *>          If LRWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the required sizes of the WORK, RWORK
 | |
| *>          and IWORK arrays, returns these values as the first entries
 | |
| *>          of the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of array IWORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
 | |
| *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the required sizes of the WORK, RWORK
 | |
| *>          and IWORK arrays, returns these values as the first entries
 | |
| *>          of the WORK, RWORK and IWORK arrays, and no error message
 | |
| *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = i, the algorithm failed to converge; i
 | |
| *>                off-diagonal elements of an intermediate tridiagonal
 | |
| *>                form did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16OTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
 | |
|      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   RWORK( * ), W( * )
 | |
|       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CONE
 | |
|       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, WANTZ
 | |
|       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
 | |
|      $                   ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | |
|      $                   SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANHP
 | |
|       EXTERNAL           LSAME, DLAMCH, ZLANHP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
 | |
|      $                   ZUPMTR
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
 | |
|      $          THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.LE.1 ) THEN
 | |
|             LWMIN = 1
 | |
|             LIWMIN = 1
 | |
|             LRWMIN = 1
 | |
|          ELSE
 | |
|             IF( WANTZ ) THEN
 | |
|                LWMIN = 2*N
 | |
|                LRWMIN = 1 + 5*N + 2*N**2
 | |
|                LIWMIN = 3 + 5*N
 | |
|             ELSE
 | |
|                LWMIN = N
 | |
|                LRWMIN = N
 | |
|                LIWMIN = 1
 | |
|             END IF
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
|          RWORK( 1 ) = LRWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -9
 | |
|          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -11
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZHPEVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          W( 1 ) = AP( 1 )
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = CONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = SQRT( BIGNUM )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
 | |
|       ISCALE = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDTAU = 1
 | |
|       INDRWK = INDE + N
 | |
|       INDWRK = INDTAU + N
 | |
|       LLWRK = LWORK - INDWRK + 1
 | |
|       LLRWK = LRWORK - INDRWK + 1
 | |
|       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
 | |
|      $             IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
 | |
| *     ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL DSTERF( N, W, RWORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
 | |
|      $                LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
 | |
|      $                INFO )
 | |
|          CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
 | |
|      $                WORK( INDWRK ), IINFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = N
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       RWORK( 1 ) = LRWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHPEVD
 | |
| *
 | |
|       END
 |