322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSYGST
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSYGST + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygst.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygst.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygst.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, ITYPE, LDA, LDB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSYGST reduces a real symmetric-definite generalized eigenproblem
 | |
| *> to standard form.
 | |
| *>
 | |
| *> If ITYPE = 1, the problem is A*x = lambda*B*x,
 | |
| *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 | |
| *>
 | |
| *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 | |
| *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
 | |
| *>
 | |
| *> B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 | |
| *>          = 2 or 3: compute U*A*U**T or L**T*A*L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored and B is factored as
 | |
| *>                  U**T*U;
 | |
| *>          = 'L':  Lower triangle of A is stored and B is factored as
 | |
| *>                  L*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          N-by-N upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the transformed matrix, stored in the
 | |
| *>          same format as A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,N)
 | |
| *>          The triangular factor from the Cholesky factorization of B,
 | |
| *>          as returned by SPOTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, ITYPE, LDA, LDB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, HALF
 | |
|       PARAMETER          ( ONE = 1.0, HALF = 0.5 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            K, KB, NB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SSYGS2, SSYMM, SSYR2K, STRMM, STRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSYGST', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine the block size for this environment.
 | |
| *
 | |
|       NB = ILAENV( 1, 'SSYGST', UPLO, N, -1, -1, -1 )
 | |
| *
 | |
|       IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | |
| *
 | |
| *        Use unblocked code
 | |
| *
 | |
|          CALL SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code
 | |
| *
 | |
|          IF( ITYPE.EQ.1 ) THEN
 | |
|             IF( UPPER ) THEN
 | |
| *
 | |
| *              Compute inv(U**T)*A*inv(U)
 | |
| *
 | |
|                DO 10 K = 1, N, NB
 | |
|                   KB = MIN( N-K+1, NB )
 | |
| *
 | |
| *                 Update the upper triangle of A(k:n,k:n)
 | |
| *
 | |
|                   CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
 | |
|      $                         B( K, K ), LDB, INFO )
 | |
|                   IF( K+KB.LE.N ) THEN
 | |
|                      CALL STRSM( 'Left', UPLO, 'Transpose', 'Non-unit',
 | |
|      $                           KB, N-K-KB+1, ONE, B( K, K ), LDB,
 | |
|      $                           A( K, K+KB ), LDA )
 | |
|                      CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
 | |
|      $                           A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
 | |
|      $                           A( K, K+KB ), LDA )
 | |
|                      CALL SSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, -ONE,
 | |
|      $                            A( K, K+KB ), LDA, B( K, K+KB ), LDB,
 | |
|      $                            ONE, A( K+KB, K+KB ), LDA )
 | |
|                      CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
 | |
|      $                           A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
 | |
|      $                           A( K, K+KB ), LDA )
 | |
|                      CALL STRSM( 'Right', UPLO, 'No transpose',
 | |
|      $                           'Non-unit', KB, N-K-KB+1, ONE,
 | |
|      $                           B( K+KB, K+KB ), LDB, A( K, K+KB ),
 | |
|      $                           LDA )
 | |
|                   END IF
 | |
|    10          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Compute inv(L)*A*inv(L**T)
 | |
| *
 | |
|                DO 20 K = 1, N, NB
 | |
|                   KB = MIN( N-K+1, NB )
 | |
| *
 | |
| *                 Update the lower triangle of A(k:n,k:n)
 | |
| *
 | |
|                   CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
 | |
|      $                         B( K, K ), LDB, INFO )
 | |
|                   IF( K+KB.LE.N ) THEN
 | |
|                      CALL STRSM( 'Right', UPLO, 'Transpose', 'Non-unit',
 | |
|      $                           N-K-KB+1, KB, ONE, B( K, K ), LDB,
 | |
|      $                           A( K+KB, K ), LDA )
 | |
|                      CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
 | |
|      $                           A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
 | |
|      $                           A( K+KB, K ), LDA )
 | |
|                      CALL SSYR2K( UPLO, 'No transpose', N-K-KB+1, KB,
 | |
|      $                            -ONE, A( K+KB, K ), LDA, B( K+KB, K ),
 | |
|      $                            LDB, ONE, A( K+KB, K+KB ), LDA )
 | |
|                      CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
 | |
|      $                           A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
 | |
|      $                           A( K+KB, K ), LDA )
 | |
|                      CALL STRSM( 'Left', UPLO, 'No transpose',
 | |
|      $                           'Non-unit', N-K-KB+1, KB, ONE,
 | |
|      $                           B( K+KB, K+KB ), LDB, A( K+KB, K ),
 | |
|      $                           LDA )
 | |
|                   END IF
 | |
|    20          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( UPPER ) THEN
 | |
| *
 | |
| *              Compute U*A*U**T
 | |
| *
 | |
|                DO 30 K = 1, N, NB
 | |
|                   KB = MIN( N-K+1, NB )
 | |
| *
 | |
| *                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
 | |
| *
 | |
|                   CALL STRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
 | |
|      $                        K-1, KB, ONE, B, LDB, A( 1, K ), LDA )
 | |
|                   CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
 | |
|      $                        LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
 | |
|                   CALL SSYR2K( UPLO, 'No transpose', K-1, KB, ONE,
 | |
|      $                         A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
 | |
|      $                         LDA )
 | |
|                   CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
 | |
|      $                        LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
 | |
|                   CALL STRMM( 'Right', UPLO, 'Transpose', 'Non-unit',
 | |
|      $                        K-1, KB, ONE, B( K, K ), LDB, A( 1, K ),
 | |
|      $                        LDA )
 | |
|                   CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
 | |
|      $                         B( K, K ), LDB, INFO )
 | |
|    30          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Compute L**T*A*L
 | |
| *
 | |
|                DO 40 K = 1, N, NB
 | |
|                   KB = MIN( N-K+1, NB )
 | |
| *
 | |
| *                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
 | |
| *
 | |
|                   CALL STRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
 | |
|      $                        KB, K-1, ONE, B, LDB, A( K, 1 ), LDA )
 | |
|                   CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
 | |
|      $                        LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
 | |
|                   CALL SSYR2K( UPLO, 'Transpose', K-1, KB, ONE,
 | |
|      $                         A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A,
 | |
|      $                         LDA )
 | |
|                   CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
 | |
|      $                        LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
 | |
|                   CALL STRMM( 'Left', UPLO, 'Transpose', 'Non-unit', KB,
 | |
|      $                        K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA )
 | |
|                   CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
 | |
|      $                         B( K, K ), LDB, INFO )
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYGST
 | |
| *
 | |
|       END
 |