415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE ZGEMM3MF(TRA,TRB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE COMPLEX ALPHA,BETA
 | |
|       INTEGER K,LDA,LDB,LDC,M,N
 | |
|       CHARACTER TRA,TRB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  ZGEMM  performs one of the matrix-matrix operations
 | |
| *
 | |
| *     C := alpha*op( A )*op( B ) + beta*C,
 | |
| *
 | |
| *  where  op( X ) is one of
 | |
| *
 | |
| *     op( X ) = X   or   op( X ) = X'   or   op( X ) = conjg( X' ),
 | |
| *
 | |
| *  alpha and beta are scalars, and A, B and C are matrices, with op( A )
 | |
| *  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
 | |
| *
 | |
| *  Arguments
 | |
| *  ==========
 | |
| *
 | |
| *  TRA - CHARACTER*1.
 | |
| *           On entry, TRA specifies the form of op( A ) to be used in
 | |
| *           the matrix multiplication as follows:
 | |
| *
 | |
| *              TRA = 'N' or 'n',  op( A ) = A.
 | |
| *
 | |
| *              TRA = 'T' or 't',  op( A ) = A'.
 | |
| *
 | |
| *              TRA = 'C' or 'c',  op( A ) = conjg( A' ).
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRB - CHARACTER*1.
 | |
| *           On entry, TRB specifies the form of op( B ) to be used in
 | |
| *           the matrix multiplication as follows:
 | |
| *
 | |
| *              TRB = 'N' or 'n',  op( B ) = B.
 | |
| *
 | |
| *              TRB = 'T' or 't',  op( B ) = B'.
 | |
| *
 | |
| *              TRB = 'C' or 'c',  op( B ) = conjg( B' ).
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  M      - INTEGER.
 | |
| *           On entry,  M  specifies  the number  of rows  of the  matrix
 | |
| *           op( A )  and of the  matrix  C.  M  must  be at least  zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry,  N  specifies the number  of columns of the matrix
 | |
| *           op( B ) and the number of columns of the matrix C. N must be
 | |
| *           at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  K      - INTEGER.
 | |
| *           On entry,  K  specifies  the number of columns of the matrix
 | |
| *           op( A ) and the number of rows of the matrix op( B ). K must
 | |
| *           be at least  zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - COMPLEX*16      .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
 | |
| *           k  when  TRA = 'N' or 'n',  and is  m  otherwise.
 | |
| *           Before entry with  TRA = 'N' or 'n',  the leading  m by k
 | |
| *           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *           the leading  k by m  part of the array  A  must contain  the
 | |
| *           matrix A.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. When  TRA = 'N' or 'n' then
 | |
| *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | |
| *           least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  B      - COMPLEX*16       array of DIMENSION ( LDB, kb ), where kb is
 | |
| *           n  when  TRB = 'N' or 'n',  and is  k  otherwise.
 | |
| *           Before entry with  TRB = 'N' or 'n',  the leading  k by n
 | |
| *           part of the array  B  must contain the matrix  B,  otherwise
 | |
| *           the leading  n by k  part of the array  B  must contain  the
 | |
| *           matrix B.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDB    - INTEGER.
 | |
| *           On entry, LDB specifies the first dimension of B as declared
 | |
| *           in the calling (sub) program. When  TRB = 'N' or 'n' then
 | |
| *           LDB must be at least  max( 1, k ), otherwise  LDB must be at
 | |
| *           least  max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - COMPLEX*16      .
 | |
| *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | |
| *           supplied as zero then C need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
 | |
| *           Before entry, the leading  m by n  part of the array  C must
 | |
| *           contain the matrix  C,  except when  beta  is zero, in which
 | |
| *           case C need not be set on entry.
 | |
| *           On exit, the array  C  is overwritten by the  m by n  matrix
 | |
| *           ( alpha*op( A )*op( B ) + beta*C ).
 | |
| *
 | |
| *  LDC    - INTEGER.
 | |
| *           On entry, LDC specifies the first dimension of C as declared
 | |
| *           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *           max( 1, m ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL LSAME
 | |
|       EXTERNAL LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC DCONJG,MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE COMPLEX TEMP
 | |
|       INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
 | |
|       LOGICAL CONJA,CONJB,NOTA,NOTB
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       DOUBLE COMPLEX ONE
 | |
|       PARAMETER (ONE= (1.0D+0,0.0D+0))
 | |
|       DOUBLE COMPLEX ZERO
 | |
|       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 | |
| *     ..
 | |
| *
 | |
| *     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
 | |
| *     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
 | |
| *     B  respectively are to be  transposed but  not conjugated  and set
 | |
| *     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
 | |
| *     and the number of rows of  B  respectively.
 | |
| *
 | |
|       NOTA = LSAME(TRA,'N')
 | |
|       NOTB = LSAME(TRB,'N')
 | |
|       CONJA = LSAME(TRA,'C')
 | |
|       CONJB = LSAME(TRB,'C')
 | |
|       IF (NOTA) THEN
 | |
|           NROWA = M
 | |
|           NCOLA = K
 | |
|       ELSE
 | |
|           NROWA = K
 | |
|           NCOLA = M
 | |
|       END IF
 | |
|       IF (NOTB) THEN
 | |
|           NROWB = K
 | |
|       ELSE
 | |
|           NROWB = N
 | |
|       END IF
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
 | |
|      +    (.NOT.LSAME(TRA,'T'))) THEN
 | |
|           INFO = 1
 | |
|       ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
 | |
|      +         (.NOT.LSAME(TRB,'T'))) THEN
 | |
|           INFO = 2
 | |
|       ELSE IF (M.LT.0) THEN
 | |
|           INFO = 3
 | |
|       ELSE IF (N.LT.0) THEN
 | |
|           INFO = 4
 | |
|       ELSE IF (K.LT.0) THEN
 | |
|           INFO = 5
 | |
|       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
 | |
|           INFO = 8
 | |
|       ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
 | |
|           INFO = 10
 | |
|       ELSE IF (LDC.LT.MAX(1,M)) THEN
 | |
|           INFO = 13
 | |
|       END IF
 | |
|       IF (INFO.NE.0) THEN
 | |
|           CALL XERBLA('ZGEMM ',INFO)
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
 | |
|      +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF (ALPHA.EQ.ZERO) THEN
 | |
|           IF (BETA.EQ.ZERO) THEN
 | |
|               DO 20 J = 1,N
 | |
|                   DO 10 I = 1,M
 | |
|                       C(I,J) = ZERO
 | |
|    10             CONTINUE
 | |
|    20         CONTINUE
 | |
|           ELSE
 | |
|               DO 40 J = 1,N
 | |
|                   DO 30 I = 1,M
 | |
|                       C(I,J) = BETA*C(I,J)
 | |
|    30             CONTINUE
 | |
|    40         CONTINUE
 | |
|           END IF
 | |
|           RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF (NOTB) THEN
 | |
|           IF (NOTA) THEN
 | |
| *
 | |
| *           Form  C := alpha*A*B + beta*C.
 | |
| *
 | |
|               DO 90 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 50 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|    50                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 60 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|    60                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 80 L = 1,K
 | |
|                       IF (B(L,J).NE.ZERO) THEN
 | |
|                           TEMP = ALPHA*B(L,J)
 | |
|                           DO 70 I = 1,M
 | |
|                               C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|    70                     CONTINUE
 | |
|                       END IF
 | |
|    80             CONTINUE
 | |
|    90         CONTINUE
 | |
|           ELSE IF (CONJA) THEN
 | |
| *
 | |
| *           Form  C := alpha*conjg( A' )*B + beta*C.
 | |
| *
 | |
|               DO 120 J = 1,N
 | |
|                   DO 110 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 100 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
 | |
|   100                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   110             CONTINUE
 | |
|   120         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A'*B + beta*C
 | |
| *
 | |
|               DO 150 J = 1,N
 | |
|                   DO 140 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 130 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*B(L,J)
 | |
|   130                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   140             CONTINUE
 | |
|   150         CONTINUE
 | |
|           END IF
 | |
|       ELSE IF (NOTA) THEN
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*A*conjg( B' ) + beta*C.
 | |
| *
 | |
|               DO 200 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 160 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|   160                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 170 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   170                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 190 L = 1,K
 | |
|                       IF (B(J,L).NE.ZERO) THEN
 | |
|                           TEMP = ALPHA*DCONJG(B(J,L))
 | |
|                           DO 180 I = 1,M
 | |
|                               C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|   180                     CONTINUE
 | |
|                       END IF
 | |
|   190             CONTINUE
 | |
|   200         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A*B'          + beta*C
 | |
| *
 | |
|               DO 250 J = 1,N
 | |
|                   IF (BETA.EQ.ZERO) THEN
 | |
|                       DO 210 I = 1,M
 | |
|                           C(I,J) = ZERO
 | |
|   210                 CONTINUE
 | |
|                   ELSE IF (BETA.NE.ONE) THEN
 | |
|                       DO 220 I = 1,M
 | |
|                           C(I,J) = BETA*C(I,J)
 | |
|   220                 CONTINUE
 | |
|                   END IF
 | |
|                   DO 240 L = 1,K
 | |
|                       IF (B(J,L).NE.ZERO) THEN
 | |
|                           TEMP = ALPHA*B(J,L)
 | |
|                           DO 230 I = 1,M
 | |
|                               C(I,J) = C(I,J) + TEMP*A(I,L)
 | |
|   230                     CONTINUE
 | |
|                       END IF
 | |
|   240             CONTINUE
 | |
|   250         CONTINUE
 | |
|           END IF
 | |
|       ELSE IF (CONJA) THEN
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*conjg( A' )*conjg( B' ) + beta*C.
 | |
| *
 | |
|               DO 280 J = 1,N
 | |
|                   DO 270 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 260 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
 | |
|   260                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   270             CONTINUE
 | |
|   280         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*conjg( A' )*B' + beta*C
 | |
| *
 | |
|               DO 310 J = 1,N
 | |
|                   DO 300 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 290 L = 1,K
 | |
|                           TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
 | |
|   290                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   300             CONTINUE
 | |
|   310         CONTINUE
 | |
|           END IF
 | |
|       ELSE
 | |
|           IF (CONJB) THEN
 | |
| *
 | |
| *           Form  C := alpha*A'*conjg( B' ) + beta*C
 | |
| *
 | |
|               DO 340 J = 1,N
 | |
|                   DO 330 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 320 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
 | |
|   320                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   330             CONTINUE
 | |
|   340         CONTINUE
 | |
|           ELSE
 | |
| *
 | |
| *           Form  C := alpha*A'*B' + beta*C
 | |
| *
 | |
|               DO 370 J = 1,N
 | |
|                   DO 360 I = 1,M
 | |
|                       TEMP = ZERO
 | |
|                       DO 350 L = 1,K
 | |
|                           TEMP = TEMP + A(L,I)*B(J,L)
 | |
|   350                 CONTINUE
 | |
|                       IF (BETA.EQ.ZERO) THEN
 | |
|                           C(I,J) = ALPHA*TEMP
 | |
|                       ELSE
 | |
|                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
 | |
|                       END IF
 | |
|   360             CONTINUE
 | |
|   370         CONTINUE
 | |
|           END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEMM .
 | |
| *
 | |
|       END
 |