373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE ZHER2KF( UPLO, TRANS, N, K, ALPHA, A, LDA, B,LDB, BETA,
 | |
|      $                   C, LDC )
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS, UPLO
 | |
|       INTEGER            K, LDA, LDB, LDC, N
 | |
|       DOUBLE PRECISION   BETA
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  ZHER2K  performs one of the hermitian rank 2k operations
 | |
| *
 | |
| *     C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
 | |
| *
 | |
| *  or
 | |
| *
 | |
| *     C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
 | |
| *
 | |
| *  where  alpha and beta  are scalars with  beta  real,  C is an  n by n
 | |
| *  hermitian matrix and  A and B  are  n by k matrices in the first case
 | |
| *  and  k by n  matrices in the second case.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *           triangular  part  of the  array  C  is to be  referenced  as
 | |
| *           follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry,  TRANS  specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'    C := alpha*A*conjg( B' )          +
 | |
| *                                         conjg( alpha )*B*conjg( A' ) +
 | |
| *                                         beta*C.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'    C := alpha*conjg( A' )*B          +
 | |
| *                                         conjg( alpha )*conjg( B' )*A +
 | |
| *                                         beta*C.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry,  N specifies the order of the matrix C.  N must be
 | |
| *           at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  K      - INTEGER.
 | |
| *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | |
| *           of  columns  of the  matrices  A and B,  and on  entry  with
 | |
| *           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
 | |
| *           matrices  A and B.  K must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - COMPLEX*16         .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
 | |
| *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *           the leading  k by n  part of the array  A  must contain  the
 | |
| *           matrix A.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | |
| *           be at least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  B      - COMPLEX*16       array of DIMENSION ( LDB, kb ), where kb is
 | |
| *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *           part of the array  B  must contain the matrix  B,  otherwise
 | |
| *           the leading  k by n  part of the array  B  must contain  the
 | |
| *           matrix B.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDB    - INTEGER.
 | |
| *           On entry, LDB specifies the first dimension of B as declared
 | |
| *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *           then  LDB must be at least  max( 1, n ), otherwise  LDB must
 | |
| *           be at least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - DOUBLE PRECISION            .
 | |
| *           On entry, BETA specifies the scalar beta.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  C      - COMPLEX*16          array of DIMENSION ( LDC, n ).
 | |
| *           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | |
| *           upper triangular part of the array C must contain the upper
 | |
| *           triangular part  of the  hermitian matrix  and the strictly
 | |
| *           lower triangular part of C is not referenced.  On exit, the
 | |
| *           upper triangular part of the array  C is overwritten by the
 | |
| *           upper triangular part of the updated matrix.
 | |
| *           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | |
| *           lower triangular part of the array C must contain the lower
 | |
| *           triangular part  of the  hermitian matrix  and the strictly
 | |
| *           upper triangular part of C is not referenced.  On exit, the
 | |
| *           lower triangular part of the array  C is overwritten by the
 | |
| *           lower triangular part of the updated matrix.
 | |
| *           Note that the imaginary parts of the diagonal elements need
 | |
| *           not be set,  they are assumed to be zero,  and on exit they
 | |
| *           are set to zero.
 | |
| *
 | |
| *  LDC    - INTEGER.
 | |
| *           On entry, LDC specifies the first dimension of C as declared
 | |
| *           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
 | |
| *     Ed Anderson, Cray Research Inc.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DCONJG, MAX
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, INFO, J, L, NROWA
 | |
|       COMPLEX*16         TEMP1, TEMP2
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
|       COMPLEX*16         ZERO
 | |
|       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) ) THEN
 | |
|          NROWA = N
 | |
|       ELSE
 | |
|          NROWA = K
 | |
|       END IF
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ( .NOT.UPPER ) .AND. ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ) .AND.
 | |
|      $         ( .NOT.LSAME( TRANS, 'C' ) ) ) THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( LDB.LT.MAX( 1, NROWA ) ) THEN
 | |
|          INFO = 9
 | |
|       ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = 12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZHER2K', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
 | |
|      $    ( BETA.EQ.ONE ) ) )RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF( ALPHA.EQ.ZERO ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                DO 20 J = 1, N
 | |
|                   DO 10 I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    10             CONTINUE
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 J = 1, N
 | |
|                   DO 30 I = 1, J - 1
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    30             CONTINUE
 | |
|                   C( J, J ) = BETA*DBLE( C( J, J ) )
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                DO 60 J = 1, N
 | |
|                   DO 50 I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 80 J = 1, N
 | |
|                   C( J, J ) = BETA*DBLE( C( J, J ) )
 | |
|                   DO 70 I = J + 1, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) ) THEN
 | |
| *
 | |
| *        Form  C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
 | |
| *                   C.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             DO 130 J = 1, N
 | |
|                IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                   DO 90 I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    90             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE ) THEN
 | |
|                   DO 100 I = 1, J - 1
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   100             CONTINUE
 | |
|                   C( J, J ) = BETA*DBLE( C( J, J ) )
 | |
|                ELSE
 | |
|                   C( J, J ) = DBLE( C( J, J ) )
 | |
|                END IF
 | |
|                DO 120 L = 1, K
 | |
|                   IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) )
 | |
|      $                 THEN
 | |
|                      TEMP1 = ALPHA*DCONJG( B( J, L ) )
 | |
|                      TEMP2 = DCONJG( ALPHA*A( J, L ) )
 | |
|                      DO 110 I = 1, J - 1
 | |
|                         C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
 | |
|      $                              B( I, L )*TEMP2
 | |
|   110                CONTINUE
 | |
|                      C( J, J ) = DBLE( C( J, J ) ) +
 | |
|      $                           DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 )
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|          ELSE
 | |
|             DO 180 J = 1, N
 | |
|                IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                   DO 140 I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|   140             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE ) THEN
 | |
|                   DO 150 I = J + 1, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   150             CONTINUE
 | |
|                   C( J, J ) = BETA*DBLE( C( J, J ) )
 | |
|                ELSE
 | |
|                   C( J, J ) = DBLE( C( J, J ) )
 | |
|                END IF
 | |
|                DO 170 L = 1, K
 | |
|                   IF( ( A( J, L ).NE.ZERO ) .OR. ( B( J, L ).NE.ZERO ) )
 | |
|      $                 THEN
 | |
|                      TEMP1 = ALPHA*DCONJG( B( J, L ) )
 | |
|                      TEMP2 = DCONJG( ALPHA*A( J, L ) )
 | |
|                      DO 160 I = J + 1, N
 | |
|                         C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
 | |
|      $                              B( I, L )*TEMP2
 | |
|   160                CONTINUE
 | |
|                      C( J, J ) = DBLE( C( J, J ) ) +
 | |
|      $                           DBLE( A( J, L )*TEMP1+B( J, L )*TEMP2 )
 | |
|                   END IF
 | |
|   170          CONTINUE
 | |
|   180       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
 | |
| *                   C.
 | |
| *
 | |
|          IF( UPPER ) THEN
 | |
|             DO 210 J = 1, N
 | |
|                DO 200 I = 1, J
 | |
|                   TEMP1 = ZERO
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 190 L = 1, K
 | |
|                      TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J )
 | |
|                      TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J )
 | |
|   190             CONTINUE
 | |
|                   IF( I.EQ.J ) THEN
 | |
|                      IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                         C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
 | |
|      $                              TEMP2 )
 | |
|                      ELSE
 | |
|                         C( J, J ) = BETA*DBLE( C( J, J ) ) +
 | |
|      $                              DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
 | |
|      $                              TEMP2 )
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                         C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2
 | |
|                      ELSE
 | |
|                         C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 +
 | |
|      $                              DCONJG( ALPHA )*TEMP2
 | |
|                      END IF
 | |
|                   END IF
 | |
|   200          CONTINUE
 | |
|   210       CONTINUE
 | |
|          ELSE
 | |
|             DO 240 J = 1, N
 | |
|                DO 230 I = J, N
 | |
|                   TEMP1 = ZERO
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 220 L = 1, K
 | |
|                      TEMP1 = TEMP1 + DCONJG( A( L, I ) )*B( L, J )
 | |
|                      TEMP2 = TEMP2 + DCONJG( B( L, I ) )*A( L, J )
 | |
|   220             CONTINUE
 | |
|                   IF( I.EQ.J ) THEN
 | |
|                      IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                         C( J, J ) = DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
 | |
|      $                              TEMP2 )
 | |
|                      ELSE
 | |
|                         C( J, J ) = BETA*DBLE( C( J, J ) ) +
 | |
|      $                              DBLE( ALPHA*TEMP1+DCONJG( ALPHA )*
 | |
|      $                              TEMP2 )
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      IF( BETA.EQ.DBLE( ZERO ) ) THEN
 | |
|                         C( I, J ) = ALPHA*TEMP1 + DCONJG( ALPHA )*TEMP2
 | |
|                      ELSE
 | |
|                         C( I, J ) = BETA*C( I, J ) + ALPHA*TEMP1 +
 | |
|      $                              DCONJG( ALPHA )*TEMP2
 | |
|                      END IF
 | |
|                   END IF
 | |
|   230          CONTINUE
 | |
|   240       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHER2K.
 | |
| *
 | |
|       END
 |