286 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTBT03
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
 | 
						|
*                          SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
 | 
						|
*                          RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, TRANS, UPLO
 | 
						|
*       INTEGER            KD, LDAB, LDB, LDX, N, NRHS
 | 
						|
*       REAL               RESID, SCALE, TSCAL
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               CNORM( * )
 | 
						|
*       COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTBT03 computes the residual for the solution to a scaled triangular
 | 
						|
*> system of equations  A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b
 | 
						|
*> when A is a triangular band matrix.  Here A**T  denotes the transpose
 | 
						|
*> of A, A**H denotes the conjugate transpose of A, s is a scalar, and
 | 
						|
*> x and b are N by NRHS matrices.  The test ratio is the maximum over
 | 
						|
*> the number of right hand sides of
 | 
						|
*>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 | 
						|
*> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the operation applied to A.
 | 
						|
*>          = 'N':  A *x = s*b     (No transpose)
 | 
						|
*>          = 'T':  A**T *x = s*b  (Transpose)
 | 
						|
*>          = 'C':  A**H *x = s*b  (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KD
 | 
						|
*> \verbatim
 | 
						|
*>          KD is INTEGER
 | 
						|
*>          The number of superdiagonals or subdiagonals of the
 | 
						|
*>          triangular band matrix A.  KD >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices X and B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX array, dimension (LDAB,N)
 | 
						|
*>          The upper or lower triangular band matrix A, stored in the
 | 
						|
*>          first kd+1 rows of the array. The j-th column of A is stored
 | 
						|
*>          in the j-th column of the array AB as follows:
 | 
						|
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | 
						|
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= KD+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is REAL
 | 
						|
*>          The scaling factor s used in solving the triangular system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CNORM
 | 
						|
*> \verbatim
 | 
						|
*>          CNORM is REAL array, dimension (N)
 | 
						|
*>          The 1-norms of the columns of A, not counting the diagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSCAL
 | 
						|
*> \verbatim
 | 
						|
*>          TSCAL is REAL
 | 
						|
*>          The scaling factor used in computing the 1-norms in CNORM.
 | 
						|
*>          CNORM actually contains the column norms of TSCAL*A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          The maximum over the number of right hand sides of
 | 
						|
*>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
 | 
						|
     $                   SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
 | 
						|
     $                   RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, TRANS, UPLO
 | 
						|
      INTEGER            KD, LDAB, LDB, LDX, N, NRHS
 | 
						|
      REAL               RESID, SCALE, TSCAL
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               CNORM( * )
 | 
						|
      COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IX, J
 | 
						|
      REAL               EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           LSAME, ICAMAX, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CAXPY, CCOPY, CSSCAL, CTBMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      SMLNUM = SLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Compute the norm of the triangular matrix A using the column
 | 
						|
*     norms already computed by CLATBS.
 | 
						|
*
 | 
						|
      TNORM = ZERO
 | 
						|
      IF( LSAME( DIAG, 'N' ) ) THEN
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 10 J = 1, N
 | 
						|
               TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
 | 
						|
     $                 CNORM( J ) )
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 20 J = 1, N
 | 
						|
               TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         DO 30 J = 1, N
 | 
						|
            TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the maximum over the number of right hand sides of
 | 
						|
*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 40 J = 1, NRHS
 | 
						|
         CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
 | 
						|
         IX = ICAMAX( N, WORK, 1 )
 | 
						|
         XNORM = MAX( ONE, ABS( X( IX, J ) ) )
 | 
						|
         XSCAL = ( ONE / XNORM ) / REAL( KD+1 )
 | 
						|
         CALL CSSCAL( N, XSCAL, WORK, 1 )
 | 
						|
         CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
 | 
						|
         CALL CAXPY( N, CMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
 | 
						|
         IX = ICAMAX( N, WORK, 1 )
 | 
						|
         ERR = TSCAL*ABS( WORK( IX ) )
 | 
						|
         IX = ICAMAX( N, X( 1, J ), 1 )
 | 
						|
         XNORM = ABS( X( IX, J ) )
 | 
						|
         IF( ERR*SMLNUM.LE.XNORM ) THEN
 | 
						|
            IF( XNORM.GT.ZERO )
 | 
						|
     $         ERR = ERR / XNORM
 | 
						|
         ELSE
 | 
						|
            IF( ERR.GT.ZERO )
 | 
						|
     $         ERR = ONE / EPS
 | 
						|
         END IF
 | 
						|
         IF( ERR*SMLNUM.LE.TNORM ) THEN
 | 
						|
            IF( TNORM.GT.ZERO )
 | 
						|
     $         ERR = ERR / TNORM
 | 
						|
         ELSE
 | 
						|
            IF( ERR.GT.ZERO )
 | 
						|
     $         ERR = ONE / EPS
 | 
						|
         END IF
 | 
						|
         RESID = MAX( RESID, ERR )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTBT03
 | 
						|
*
 | 
						|
      END
 |