265 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAPTM
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
 | 
						|
*                          LDB )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDB, LDX, N, NRHS
 | 
						|
*       REAL               ALPHA, BETA
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * )
 | 
						|
*       COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
 | 
						|
*> matrix A and stores the result in a matrix B.  The operation has the
 | 
						|
*> form
 | 
						|
*>
 | 
						|
*>    B := alpha * A * X + beta * B
 | 
						|
*>
 | 
						|
*> where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          Specifies whether the superdiagonal or the subdiagonal of the
 | 
						|
*>          tridiagonal matrix A is stored.
 | 
						|
*>          = 'U':  Upper, E is the superdiagonal of A.
 | 
						|
*>          = 'L':  Lower, E is the subdiagonal of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices X and B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
 | 
						|
*>          it is assumed to be 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal or superdiagonal elements of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (LDX,NRHS)
 | 
						|
*>          The N by NRHS matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(N,1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL
 | 
						|
*>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
 | 
						|
*>          it is assumed to be 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the N by NRHS matrix B.
 | 
						|
*>          On exit, B is overwritten by the matrix expression
 | 
						|
*>          B := alpha * A * X + beta * B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(N,1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
 | 
						|
     $                   LDB )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDB, LDX, N, NRHS
 | 
						|
      REAL               ALPHA, BETA
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * )
 | 
						|
      COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( BETA.EQ.ZERO ) THEN
 | 
						|
         DO 20 J = 1, NRHS
 | 
						|
            DO 10 I = 1, N
 | 
						|
               B( I, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE IF( BETA.EQ.-ONE ) THEN
 | 
						|
         DO 40 J = 1, NRHS
 | 
						|
            DO 30 I = 1, N
 | 
						|
               B( I, J ) = -B( I, J )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ALPHA.EQ.ONE ) THEN
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*           Compute B := B + A*X, where E is the superdiagonal of A.
 | 
						|
*
 | 
						|
            DO 60 J = 1, NRHS
 | 
						|
               IF( N.EQ.1 ) THEN
 | 
						|
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | 
						|
               ELSE
 | 
						|
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | 
						|
     $                        E( 1 )*X( 2, J )
 | 
						|
                  B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )*
 | 
						|
     $                        X( N-1, J ) + D( N )*X( N, J )
 | 
						|
                  DO 50 I = 2, N - 1
 | 
						|
                     B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )*
 | 
						|
     $                           X( I-1, J ) + D( I )*X( I, J ) +
 | 
						|
     $                           E( I )*X( I+1, J )
 | 
						|
   50             CONTINUE
 | 
						|
               END IF
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute B := B + A*X, where E is the subdiagonal of A.
 | 
						|
*
 | 
						|
            DO 80 J = 1, NRHS
 | 
						|
               IF( N.EQ.1 ) THEN
 | 
						|
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | 
						|
               ELSE
 | 
						|
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | 
						|
     $                        CONJG( E( 1 ) )*X( 2, J )
 | 
						|
                  B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
 | 
						|
     $                        D( N )*X( N, J )
 | 
						|
                  DO 70 I = 2, N - 1
 | 
						|
                     B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
 | 
						|
     $                           D( I )*X( I, J ) +
 | 
						|
     $                           CONJG( E( I ) )*X( I+1, J )
 | 
						|
   70             CONTINUE
 | 
						|
               END IF
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ALPHA.EQ.-ONE ) THEN
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
*
 | 
						|
*           Compute B := B - A*X, where E is the superdiagonal of A.
 | 
						|
*
 | 
						|
            DO 100 J = 1, NRHS
 | 
						|
               IF( N.EQ.1 ) THEN
 | 
						|
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | 
						|
               ELSE
 | 
						|
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | 
						|
     $                        E( 1 )*X( 2, J )
 | 
						|
                  B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )*
 | 
						|
     $                        X( N-1, J ) - D( N )*X( N, J )
 | 
						|
                  DO 90 I = 2, N - 1
 | 
						|
                     B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )*
 | 
						|
     $                           X( I-1, J ) - D( I )*X( I, J ) -
 | 
						|
     $                           E( I )*X( I+1, J )
 | 
						|
   90             CONTINUE
 | 
						|
               END IF
 | 
						|
  100       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute B := B - A*X, where E is the subdiagonal of A.
 | 
						|
*
 | 
						|
            DO 120 J = 1, NRHS
 | 
						|
               IF( N.EQ.1 ) THEN
 | 
						|
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | 
						|
               ELSE
 | 
						|
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | 
						|
     $                        CONJG( E( 1 ) )*X( 2, J )
 | 
						|
                  B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
 | 
						|
     $                        D( N )*X( N, J )
 | 
						|
                  DO 110 I = 2, N - 1
 | 
						|
                     B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
 | 
						|
     $                           D( I )*X( I, J ) -
 | 
						|
     $                           CONJG( E( I ) )*X( I+1, J )
 | 
						|
  110             CONTINUE
 | 
						|
               END IF
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAPTM
 | 
						|
*
 | 
						|
      END
 |